
Analysis of Graph Algorithms

We first analyze Breadth First Search with a rough analysis of the algorithm in order to develop some intuition. We
then build on this analysis to provide a more accurate estimate.

Breadth First Search Rough Analysis

Here is the pseudocode for the algorithm along with the estimated time complexity for each line:

procedure BFS(G, src):
1 for v ∈ V : V times
2 unmark v O(1)
3 reset parent O(1)
4 reset distance O(1)
5 reset src distance O(1)

6 mark src O(1)
7 Q ← Make-Queue(src) O(1)

8 while Q ̸= ∅: V times
9 v ← Pop(Q) O(1)

10 for u ∈ Adjacent[v]: Ei times
11 if u is unmarked: O(1)
12 update u O(1)
13 mark u O(1)
14 Add(Q, u) O(1)

The time complexity estimates in the pseudocode above come from the following observations:

� First consider the complexity of the Queue operations. If we use a Linked List with pointer to the tail node the
Queue operations MakeQueue, Add, and Pop can be implemented efficiently in O(1).

� O(V ), Lines 1-5, Init:

Initialization is O(V ) since the loop is executed once per vertex and we do constant amount of work per vertex.

� O(1), Lines 6-7, Setup:

This is O(1) given the previous note about LinkedList as a choice for Queue.

� Line 8, While Loop:

The while loop is executed V times. This may not be clear immediately, but it follows from the fact that each
vertex will enter the Queue exactly once and will leave the Queue exactly once. This is ensured by the marking
strategy – once a vertex enters the Queue it is marked which prevents it from entering the Queue twice.

� O(V ), Line 9, Finish:

Line 9, Pop(Q), which is O(1), is executed V times by the while loop (once per vertex) after which the Queue
is empty.

� O(V · E), Lines 10-14, Explore:

The for loop in Line 10 will execute at most E times. The for loop simply looks at the adjacent edges of v,
so at most we may have to examine all edges in the graph. The work inside the for loop is O(1) and since
these lines are repeated V times by the while loop, the total is O(V · E).

Overall the time complexity is:

Init(Lines 1 : 5) + Setup(Lines 6 : 7) + Finish(Line 9) + Explore(Lines 10 : 14)

O(V ) +O(1) +O(V ) +O(V · E) = O(V · E)

Our estimate of O(V ·E) suggests that the algorithm is impractical for dense graphs. If the graph is fully connected,
i.e. every vertex is connected to every other vertex, then we can estimate that E ≈ V ·V (actually E = V ·(V −1)/2),
which implies that BFS is O(V · E) = O(V 3), i.e. not practical for large graphs.



Breadth First Search Precise Analysis

We now consider a more accurate analysis of BFS. The overestimate in our analysis is in Line 10. Clearly, we do
not need to explore all edges in the graph for each vertex. Instead, for each vertex v we only explore the adjacent
edges for this vertex which is some number Adjv = Ev.

The precise analysis breaks Explore(Lines 10 : 14) by looking at the time spent to process each vertex during its
Finish and Explore steps. Here is the while loop, shown as the individual V cycles along with work per vertex:

Popped #Adjacent Work per Adjacent
Lines 11-14

v1 Ev1 O(1)
v2 Ev2 O(1)
v3 Ev3 O(1)
· · · · · · · · ·
vV EvV O(1)

Total
∑

Evi ·O(1)

What remains is to see if we can provide an estimate for
∑

Evi
. We claim that

Ev1 + Ev2 + Ev3 + · · ·+ EvV = 2E

Even though we do not know the individual terms in the above summation we actually know the overall value of the
summation itself. This value is just 2E, since every time we look at an adjacent vertex we effectively look at one of
the edges (a, b). Also, each edge (a, b) is looked at twice — once from the point of view of vertex a and once from
the point of view of vertex b (we are assuming undirected graph).

Finally, we get

Explore(Lines 10 : 14) =
∑

Evi ·O(1) = 2E ·O(1) = O(E)

Note that we do not multiply by V for the while loop, since the individual cycles of the while loop are already
taken into account in the rows of the table.

Replacing in the earlier ananysis, we get:

Init(Lines 1 : 5) + Setup(Lines 6 : 7) + Finish(Line 9) + Explore(Lines 10 : 14)

O(V ) +O(1) +O(V ) +O(E) = O(V + E)

This is much better than the first estimate. If the graph is fully connected, in which case E ≈ V 2, we get that BFS
is O(V + V 2) or O(V 2), not O(V 3).



Prim’s Algorithm Precise Analysis

The analysis of Prim’s algorithm is almost identical to the analysis of BFS. The only difference comes from the fact
that we use PriorityQueue, so the complexity of the operations is no longer O(1).

There are two operations to consider: Pop-Min and Decrease-Key. The second operation should rearrange the
PriorityQueue after the comparison value/key is updated. In Prim this value is the distance field of a vertex.

Here are a few possibilities for PriorityQueue and the complexity of operations:

Make-PQ Pop-Min Decrease-Key

BST O(n log n) O(log n) O(log n) but need to Remove+Add
Heap O(n) O(log n) O(log n) only Push-Up

Fibonacci Heap O(n) O(log n) O(1)
LinkedList O(n) O(n) O(1)

The LinkedList is given as an exercise. In principle, PriorityQueue may manage the items by storing them in a sorted
or unsorted linked list, although this may not be ideal implementation in most cases.

The analysis below will be based on the Heap option. Effectively, this means that in the algorithm analysis, which
is essentially the analysis of BFS, we need to multiply by a factor of log V .

procedure Prim(G, src):
1 for v ∈ V : V times
2 unmark v O(1)
3 reset parent O(1)
4 reset distance O(1)
5 reset src distance O(1)

6 PQ ← Make-PQ(V (G)) O(V )

7 T ← Make-Graph(V (G)) O(1)

8 while Q ̸= ∅: V times
9 v ← Pop-Min(Q) O(log V )
10 mark v O(1)

11 Add(T, edge(u, v)) O(1)

12 for u ∈ Adjacent[v]: E times
13 if u is unmarked and dist[u] > weight(v → u): O(1)
14 dist[u] ← weight(v → u), i.e. Decrease-Key O(log V )
15 update parent O(1)

The analysis is as follows:

� O(V ), Lines 1-5, Init:

Same as in BFS.

� O(V ), Lines 6-7, Setup:

Building a Heap with all vertices is O(V ) and building an empty Graph is O(1).

� Line 8, While Loop:

Executes V times. The PriorityQueue starts with all vertices and one vertex is popped per cycle.

� O(V log V ), Lines 9-11, Finish

Same as BFS but removing from the PriorityQueue is O(log V ).

� O(E log V ), Lines 9-11, Finish

Similar to BFS in the table below.



The table from BFS for the while loop analysis is adapted to Prim to reflect the log factor per queue operation:

Popped #Adjacent Work per Adjacent, Lines 13-15
dominated by

Line 14:Decrease-Key
v1 Ev1 O(log V )
v2 Ev2 O(log V )
v3 Ev3 O(log V )
· · · · · · · · ·
vV EvV O(log V )

Total
∑

Evi ·O(log V )

Finally, we get

Explore(Lines 12 : 15) =
∑

Evi ·O(log V ) = 2E ·O(lg V ) = O(E log V )

and overall

Init(Lines 1 : 5) + Setup(Lines 6 : 7) + Finish(Lines 9 : 11) + Explore(Lines 12 : 15)

O(V ) +O(V ) +O(V log V ) +O(E log V ) = O((V + E) log V )

The same analysis also applies to Dijkstra’s Algorithm, since the two algorithms only differ in what value they
compute for the dist[] field. Thus, both algorithms are O((V + E) log V ) if Heap is used.

Note: Line 14 requires special attention, since it depends on the choice of PriorityQueue. As an exercise repeat the
analysis for the various PriorityQueue options.


