Hardware Address

- <u>hardware address</u> or <u>physical address</u> or <u>media</u> <u>access (MAC) address</u> - an address assigned to a computer attached to a network.
- Each frame sent across a network includes the address of the sending computer (source address) and the address of the receiving computer (destination address).

LAN Hardware & Packet Filtering

- LAN hardware is separate and independent from a computer's CPU.
- The LAN interface handles all details of frame transmission and reception.
 - Adds source address and error detection codes to outgoing frames.
 - Checks destination address on incoming frames.
- If a frame's destination address matches, a copy of the frame is passed on to the computer.
- If a frame's destination address does not match, the frame is ignored.
- The network interface operates without using a computer's CPU.

Format of a Hardware Address

- Address depends on the LAN technology used.
- Examples.

urable

- Hardware addresses must be unique on a LAN.
- Assignment of hardware addresses:

Static	Manufacturer assigns	Manufacturer ensures
	permanent address.	unique address.
Dynamic	Address assigned	Assigning scheme
	when computer boots.	prevents conflicts.
Config-	Address set by users.	Someone coordinates

assignments.

Packet Contents

- The hardware addressing scheme allows a sender to identify a recipient of a packet, but it gives no information about a packet's contents.
- Two methods are used to identify a packet's contents:
 - Explicit frame type: an identifying value is included in the frame to describe the contents.
 - Implicit frame type: no identifying value is included; the receiver must infer the content type from the data itself.

Frame Headers & Formats

- Each LAN technology defines a frame format.
- Most modern standards specify a <u>frame header</u> followed by the frame data or payload.
- The size and format of a frame header are fixed.
 The size of the data area varies.

Example: Ethernet Frame Format

Preamble Allows receiver to synchronize

with incoming signal

Dest. Address Hardware address of recipient

Hardware address of sender

Type of data carried in frame

Frame's payload

CRC code

Dest. Address
Source Address
Frame Type
Data in Frame
CRC

- Since a hardware address consists of 6 hexadecimal numbers, there are 2566 = 2.8x10¹⁴ possible hardware addresses.
- The Ethernet standard specifies a header field of 48 bits for the recipient's hardware address. Note that 2⁴⁸ = 256⁶.
- Although hardware addresses have to be unique only on a particular network, it's interesting that the Ethernet standard can accommodate all possible addresses.

Frames without Type Fields

- Some LAN technologies do not include a type field in the frame header.
- There are two ways around this:
 - The sender and receiver agree in advance to use a single data format. Too limiting and rarely done.
 - The sender and receiver agree to encode the data type in the first few bytes of the data field.
 The problem is what to include.

- Including a type field in the frame header means that the designers of the hardware technology decide what goes in the type field.
- If there is no frame type field, it's up to the software application designers to choose whatever they want for type values. Leads to nonstandardization and confusion.
- This is a job for a standards organization.
- Unfortunately, several organizations have come up with different standards.
- IEEE to the rescue! The IEEE 802.2 standard includes a specification known as a <u>Logical Link</u> <u>Control (LLC) SubNetwork Attachment Point</u> (SNAP) header.

Network Analyzer

- <u>network analyzer</u> or <u>network monitor</u> or <u>network</u>
 <u>sniffer</u> a device or program that listens to a network and reports on traffic.
- A network analyzer...
 - can be used to examine network performance or to debug a network;
 - can report statistics such as capacity utilization distribution of frame size, collision rate, token circulation time, and so on;
 - can record and display specific frames to understand and debug packet transmissions;
 - can count frames of a specific type or size;
 - can display only frames from or to specific computers.

- promiscuous mode a mode in which a computer accepts <u>all</u> frames.
- A network analyzer places a computer with a network interface in promiscuous mode.
- Example: snoop