
Network Routing
• A major component of the network layer

routing protocol.
• Routing protocols use routing algorithms.
• Job of a routing algorithm: Given a set of

routers with links connecting the routers,
find a “good” path from the source to the
destination.

Modeling a Network
• A network can be modeled by a graph.

- Routers/switches are represented by
 nodes.
- Physical links between routers/switches
 are represented by edges.
- Attached computers are ignored.
- Each edge is assigned a weight
 representing the “cost” of sending a
 packet across that link.

• The total cost of a path is the sum of the
costs of the edges.

• The problem is to find the least-cost path.

Routing Algorithms
• Routing algorithms that solve a routing

problem are based on shortest-path
algorithms.

• Two common shortest-path algorithms are
Dijkstra’s Algorithm and the Bellman-Ford
Algorithm.

• Routing algorithms fall into two general
categories.

Link-State Algorithms
• The network topology and all link costs are

known.
• Example: Dijkstra’s Algorithm.
• More complex of the two types.
• Nodes perform independent computations.
• Used in Open Shortest Path First (OSPF)

protocol, a protocol intended to replace
RIP.

Distance-Vector Algorithms
• Nodes receive information from their

directly attached neighbors.
• Example: Bellman-Ford Algorithm.
• Simpler of the two types.
• May have convergence problems.
• Used in Routing Information Protocol (RIP).

Dijkstra’s Algorithm
• Named after E. W. Dijkstra.
• Fairly efficient.
• Iterative algorithm.
• At the first iteration, the algorithm finds the

closest node from the source node which
must be a neighbor of the source node.

• At the second iteration, the algorithm finds
the second-closest node from the source
node. This node must be a neighbor of
either the source node or the closest node
found in the first iteration.

Dijkstra’s Algorithm
• At the third iteration, the algorithm finds

the third-closest node from the source node.
This node must be a neighbor of either the
source node or one of the first two closest
nodes.

• The process continues. At the kth iteration,
the algorithm finds the first k closest nodes
from the source node.

Example
The source node is s = 1.

Example

The bottom entry in each D-column is the
minimum cost to go from the start node 1
to that node.

• Question: How can you determine the path
which gives the minimum cost to a
destination node?

• Answer: The table not only gives the
minimum costs. It also gives the
predecessor node of each node along a
least-cost path from the source node. By
keeping track of the predecessor nodes, we
can construct a least-cost path.

Least-Cost Path Tree

Routing Table for Source Node 1

Complexity of Dijkstra’s Algorithm
• Suppose there are n nodes not counting the

source node.
• In the first iteration, we need to search

through n nodes to determine the node not
in N with minimum cost.

• In the second iteration, we need to check
n–1 nodes.

• In the third iteration, n–2 nodes. And so on.

Complexity of Dijkstra’s Algorithm
• The total number of nodes we need to

examine is
1 + 2 + 3 + ••• + n = n(n+1)/2

• Thus, Dijkstra’s Algorithm as presented is
O(n2)

• A more sophisticated implementation of the
second step using a heap would find the
minimum in logarithmic instead of linear
time. This improves the performance to

O(n log n)

