Network Routing

- A major component of the network layer routing protocol.
- Routing protocols use <u>routing algorithms</u>.
- Job of a routing algorithm: Given a set of routers with links connecting the routers, find a "good" path from the source to the destination.

Modeling a Network

- A network can be modeled by a graph.
 - Routers/switches are represented by nodes.
 - Physical links between routers/switches are represented by edges.
 - Attached computers are ignored.
 - Each edge is assigned a weight representing the "cost" of sending a packet across that link.
- The total cost of a path is the sum of the costs of the edges.
- The problem is to find the least-cost path.

Routing Algorithms

- Routing algorithms that solve a routing problem are based on <u>shortest-path</u> <u>algorithms</u>.
- Two common shortest-path algorithms are Dijkstra's Algorithm and the Bellman-Ford Algorithm.
- Routing algorithms fall into two general categories.

Link-State Algorithms

- The network topology and all link costs are known.
- Example: Dijkstra's Algorithm.
- More complex of the two types.
- Nodes perform independent computations.
- Used in <u>Open Shortest Path First (OSPF)</u> protocol, a protocol intended to replace RIP.

Distance-Vector Algorithms

- Nodes receive information from their directly attached neighbors.
- Example: Bellman-Ford Algorithm.
- Simpler of the two types.
- May have convergence problems.
- Used in <u>Routing Information Protocol (RIP)</u>.

Dijkstra's Algorithm

- Named after E. W. Dijkstra.
- Fairly efficient.
- Iterative algorithm.
- At the first iteration, the algorithm finds the closest node from the source node which must be a neighbor of the source node.
- At the second iteration, the algorithm finds the second-closest node from the source node. This node must be a neighbor of either the source node or the closest node found in the first iteration.

Dijkstra's Algorithm

- At the third iteration, the algorithm finds the third-closest node from the source node. This node must be a neighbor of either the source node or one of the first two closest nodes.
- The process continues. At the kth iteration, the algorithm finds the first k closest nodes from the source node.

Example

The source node is s = 1.

Example

Iteration	N	D_2	D_{j}	D_4	Ds	D_{6}
0	{1}	3	2	5		
1	{1,3}	3		4	œ	3
2	{1,2,3}			4	7	3
3	{1,2,3,6}			4	5	
4	{1,2,3,4,6}				5	
5	{1,2,3,4,5,6}					

The bottom entry in each D-column is the minimum cost to go from the start node 1 to that node.

- <u>Question</u>: How can you determine the path which gives the minimum cost to a destination node?
- <u>Answer</u>: The table not only gives the minimum costs. It also gives the predecessor node of each node along a least-cost path from the source node. By keeping track of the predecessor nodes, we can construct a least-cost path.

Least-Cost Path Tree

Routing Table for Source Node 1

Destination	Next Node	Cost	
2	2	з	
З	3	2	
4	3	4	
5	3	5	
6	3	3	

Complexity of Dijkstra's Algorithm

- Suppose there are n nodes not counting the source node.
- In the first iteration, we need to search through n nodes to determine the node not in N with minimum cost.
- In the second iteration, we need to check n-1 nodes.
- In the third iteration, n-2 nodes. And so on.

Complexity of Dijkstra's Algorithm

 The total number of nodes we need to examine is

 $1 + 2 + 3 + \dots + n = n(n+1)/2$

- Thus, Dijkstra's Algorithm as presented is O(n²)
- A more sophisticated implementation of the second step using a heap would find the minimum in logarithmic instead of linear time. This improves the performance to O(n log n)