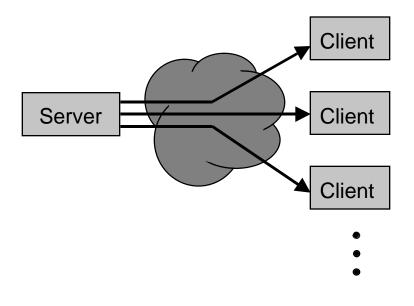
THE Problem

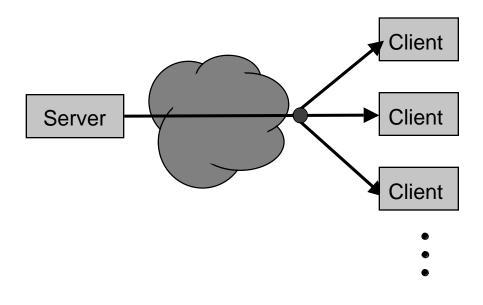
SCALABILITY is the number one problem in networking...

Everything else is secondary.

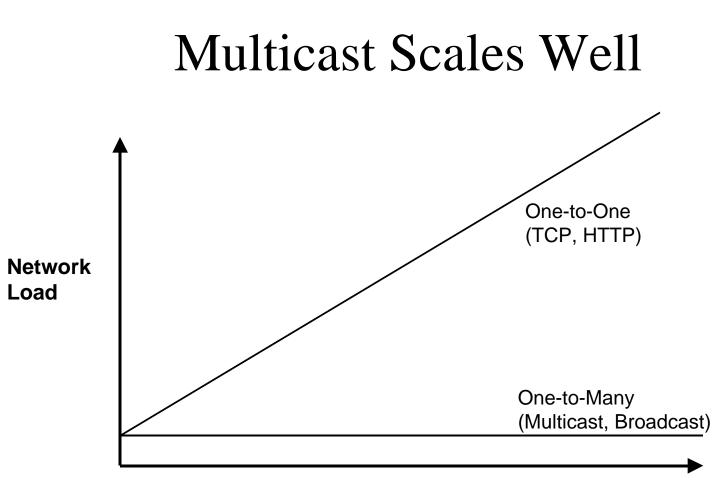

Phil Rosenzweig Director Boston Center for Networking Sun Microsystems Laboratories

4/6/01

ICSS420 Broadcast/Multicasting


1

Conventional Reliable Transport



4/6/01

Multicast

4/6/01

Receivers

4/6/01

Broadcasting and Multicasting

- There are three *kinds* of IP addresses
 - Unicast
 - Broadcast
 - Multicast
- A unicast address specifies a single interface
- A broadcast address specifies all interfaces
- A multicast address specifies some of the interfaces

Types of IP Broadcasts

- Limited broadcast
 - 255.255.255.255
 - Appears only on the local cable
 - Never forwarded by a router
- Net/Subnet directed broadcast
 - *Netid*.255.255.255 (host portion all 1's)
 - All machines on the specified network
 - Forwarded by routers (can be disabled)

The Required Pieces

- Three pieces are required for a multicast system
 - A multicast addressing scheme
 - A notification and delivery system
 - An inter-network forwarding facility

IP Multicasting

- IP Multicasting provides two services for an application
 - Delivery to multiple destinations
 - Solicitation of servers by clients
- Class D IP addresses are used for multicast

1110Multicast group ID

Host Group

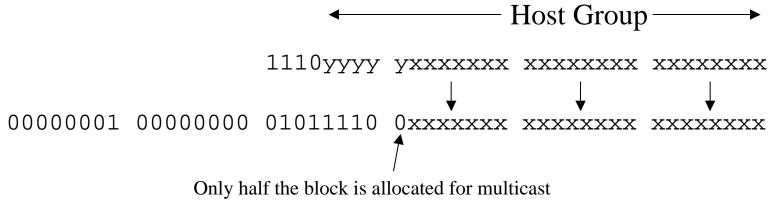
- The set of hosts listening to a particular IP multicast address is called a *host group*
- A host group can span multiple networks
- Membership in the host group is dynamic
 Hosts may join and leave at will
- No restriction on the number of hosts in a group
- A host can simply listen in on a group

Permanent Host Groups

Address	Description
224.0.0.1	All systems on this subnet
224.0.0.2	All routers on this subnet
224.0.1.1	NTP
224.0.0.9	RIP-2
224.0.1.2	SGI Dogfight
224.0.1.84	Jini Announcement
224.0.1.85	Jini Request

Host Multicast Support

• A host participates in IP multicast at one of three levels


Level	Meaning
0	Host can neither send nor receive IP multicast
1	Host can send but not receive IP multicast
2	Host can both send and receive IP multicast

Multicast on a LAN

- Ethernet supports multicasting
 - The first byte of an Ethernet multicast address is 01
- LAN cards come in two varieties
 - Multicast filtering is done based on the hash value of the multicast hardware address
 - The card contains room to store a small, fixed, number of multicast addresses to listen for

MAC to Multicast

- IANA owns the Ethernet block - 00:00:5e:xx:xx
- The addresses 01:00:5e:xx:xx are used for multicast

ICSS420 Broadcast/Multicasting

13

4/6/01

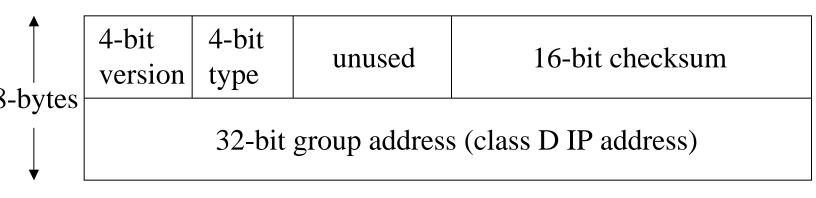
Example

- IP multicast address 224.0.0.2 becomes
 - 11100000.0000000.0000000.00000010
 - e0.00.00.02
 - 00.7f.ff.ff
 - 01.00.5e.00.00.02
- IP multicast address 225.0.0.2 becomes
 - 11100001.0000000.0000000.00000010
 - E1.00.00.02
 - 00.7f.ff.ff
 - 01.00.5e.00.00.02

4/6/01

ICSS420 Broadcast/Multicasting

14


Beyond a Single Network

- Clearly the IP to MAC scheme only works for a single physical network
- How is the mapping done when machines from different networks are part of a host group
- The IGMP protocol is used provide multicasting between networks

IGMP

- Internet Group Management Protocol (IGMP)
 - Defined in RFC1112/RFC2236
 - Considered to be part of the IP layer
 - Messages sent in IP datagrams
 - Has a fixed-size message with no optional data

IGMP Message

- The Current IGMP Version is 2
- IGMP Type
 - 1 is a query sent by a multicast router
 - 2 is a response sent by a host

IGMP Rules

• Basic rules

- 1. A host sends an IGMP report when a process first joins a group
- 2. A host does not send a report when processes leave a group (even when the last process leaves a group)
- 3. A multicast router sends an IGMP query at regular intervals to see if any hosts have processes belonging to any groups
- 4. A host responds to a query by sending one IGMP report for each group that still has members

4/6/01

IGMP Reports and Queries

IGMP report, TTL =1, IGMP group addr = group addr Dest IP addr = group addr Src IP addr = host's IP addr Multicast host

My groups are...

Identify each group...

4/6/01

ICSS420 Broadcast/Multicasting

19

Implementation Details

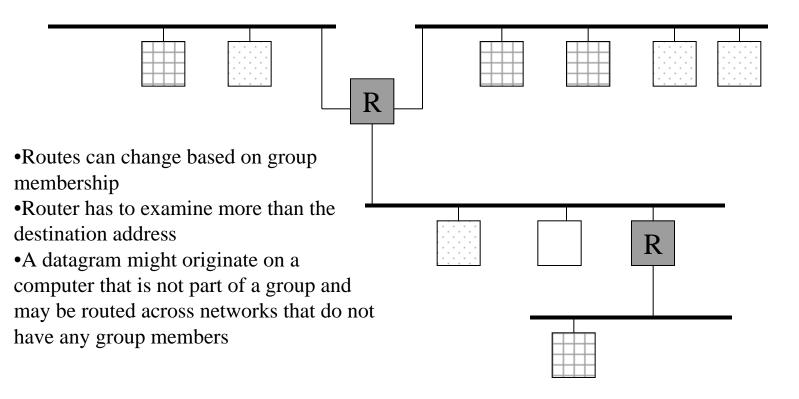
- There are several ways that IGMP minimizes its lacksquareeffect on the network
 - All communication between hosts/routers use multicast
 - A single query to request group information is sent to all groups (default rate is 125 seconds)
 - If multiple routers are on the same network, one is selected to poll membership
 - Hosts do not respond to the router's IGMP query at the same time
 - Hosts listen for responses from other hosts in the group, and suppresses unnecessary response traffic

4/6/01

Multicast Scope

- The scope of a multicast address refers to the range of its group members
 - All members on the same physical network
 - All members lie within a single organization
- Multicast datagrams have a scope which is the set of networks over which the datagram will be propagated
- Informally a datagram's scope is referred to as its range

4/6/01


Controlling Scope

- Two techniques are used to control scope
 - The TTL field is used to limit the range of a multicast datagram
 - Control messages must have a TTL of 1
 - Two applications on the same host use TTL of 0
 - Some router vendors suggest configuring routers to restrict datagrams from leaving the site unless the TTL is 15 or larger
 - Administrative scoping
 - Reserves parts of the address space for groups that are local to a given site or local to a given organization
 - 239.192.0.0 239.251.255.255 restricted to one organization
 - 239.252.0.0 239.252.255.255 restricted to one site

ICSS420 Broadcast/Multicasting

4/6/01

Multicast Routing

4/6/01

Multicast Routing

- What information does a multicast router use when deciding to forward a datagram?
 - An optimal forwarding scheme will reach all members of a group without sending a datagram across a network twice
- To avoid routing loops, multicast routers rely on the datagram's source address

Reverse Path Forwarding

- To use RPF
 - Multicast router must have a conventional routing table
- When a datagram arrives
 - Router extracts the source address
 - Looks up the address in the routing table and determines the interface, *I*, that leads to the source
 - If the datagram arrived on *I* it is forwarded to each of the other interfaces, otherwise it is discarded.

Consequences of RPF

- Since the datagram is sent across every network in the internet, every host in the group will receive a copy
- Wastes bandwidth by transmitting multicast datagrams over networks
 - That do not have group members
 - That do not lead to group members

Truncated RPF

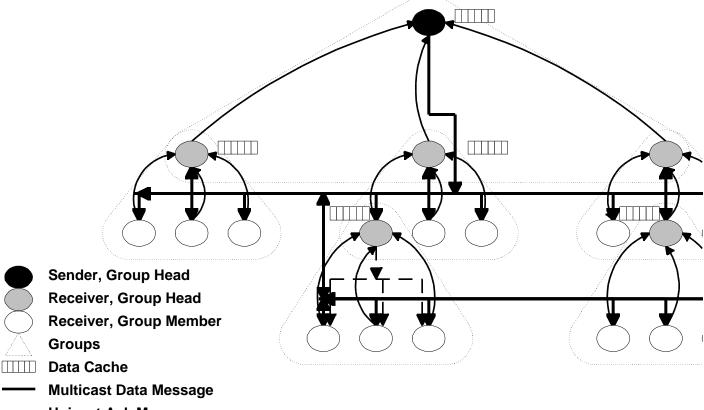
- TRPF avoids propagating datagrams where they are not needed
- Routers need two pieces of information
 - Conventional routing table
 - A list of multicast groups reachable through each interface
- To route datagrams
 - Follows the basic RPF scheme
 - IF RPF says to forward, check the list to make sure the group can be reached on *I* before sending it

The Current State of Multicast

- Most routers, switches, NICs and TCP/IP stacks support multicast
- MBONE operational on the Internet
 - http://www.lbl.gov/WWW-Info/MBONE.html
- Significant work in IETF on standardization
- Reliable multicast is a research topic in the IRTF

Reliable Multicast

- Multicast solves many problems
 - Bandwidth crisis
 - Timely Delivery
 - Latency Control
- Most applications need reliability
 - Or at least partial reliability


Terminology

- Multicasting is centered on groups
 - Single/Multiple Senders
- Dynamic Group formation/management
 - Joins
 - Late Joins
 - Leaves
- Error Recovery
 - Full/Partial Repair
 - No Repair

TRAM

- A tree-based reliable multicast protocol
 - Sender and receivers dynamically form repair groups
 - Repair groups are linked together to form a tree
- TRAM has been kept as lightweight as possible

Basic TRAM Model

- Unicast Ack Message
- -- Multicast Local Repair (Retransmission)

4/6/01

Automatic Tree Formation

- The tree
 - Each receiver is associated with a repair head
 - Be able to add new receivers to the tree at any time
 - Recover from head failure through re-affiliation
- What is a suitable repair head?
 - Shortest TTL distance
 - Eagerness to be head
 - Head experience
 - Repair data availability

ICSS420 Broadcast/Multicasting

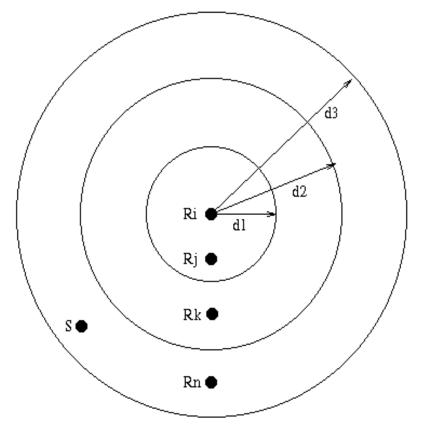
4/6/01

TRAM Features

- Reliable
- Avoids ACK implosion
- Local Repair
- Rate based flow control and congestion avoidance
- Feedback to sender
- Scalable

ICSS420 Broadcast/Multicasting

4/6/01


LRMP

- The Light-Weight Reliable Multicast Protocol
 - Guarantees sequenced and reliable delivery
 - Places no restrictions on receiver's membership
 - Allows multiple senders
 - Light-weight in terms of protocol overhead and simple in control mechanisms

Random Expanding Probe

- Would prefer the repair information be as close to the receiver as possible
- REP consists of three steps
 - Divide a multicast session into hierarchical subgroups
 - Report errors to a subgroup
 - Send repairs to a subgroup

4/6/01

LRMP

- Normal Operation
 - A source multicasts a set of data packets
 - Transmission is controlled by a transmission interval
 - A receiver detects packet loss using sequence numbers
- LRMP makes no effort to handle full repairs for late joining members

Error Reporting in LRMP

- 1. Set the number of NACK request N = 0 and the domain level i = 1
- 2. Schedule a random timer and wait.
- 3. When the timer expires check
 - 1. If the lost packets have been received, repair terminates
 - 2. Otherwise if no NACK was received, send a NACK to the domain D_i
- 4. If D_i is not the highest level, then i=i+1; otherwise N=N+1
- 5. If N < Max, go to step 2

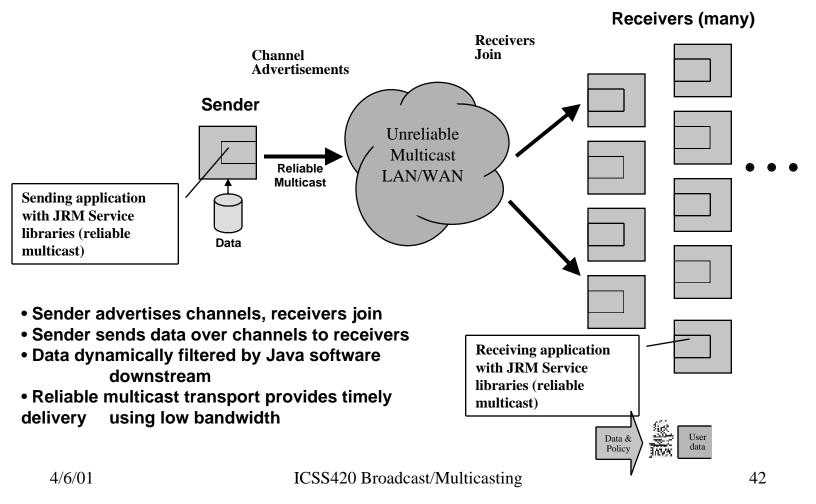
4/6/01

ICSS420 Broadcast/Multicasting

39

LRMP Features

- Suitable for bulk data transfer
- Provides support for multiple senders
- Congestion control
- Distributed Control


JRMS

- The Java Reliable Multicast Service
 - Enables building applications that multicast data from "senders" to "receivers" over "channels"
- Organized as a set of libraries and services for building multicast applications
- Functional components:
 - A common API which supports multiple concurrent reliable multicast transport protocols
 - Services for multicast address allocation and channel management

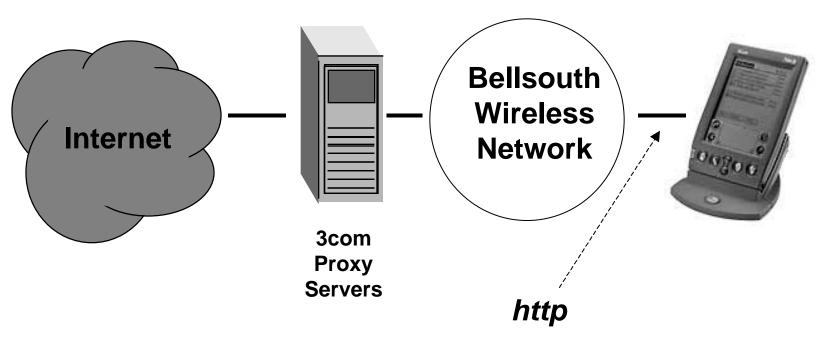
ICSS420 Broadcast/Multicasting

4/6/01

JRMS Data Flow Model

JRMS Service System

Channel Management


Transport Address Allocation

- Transport system transports data over multicast
- Address allocation system manages multicast address allocation
- Channel management system manages channels.

The Palm VII

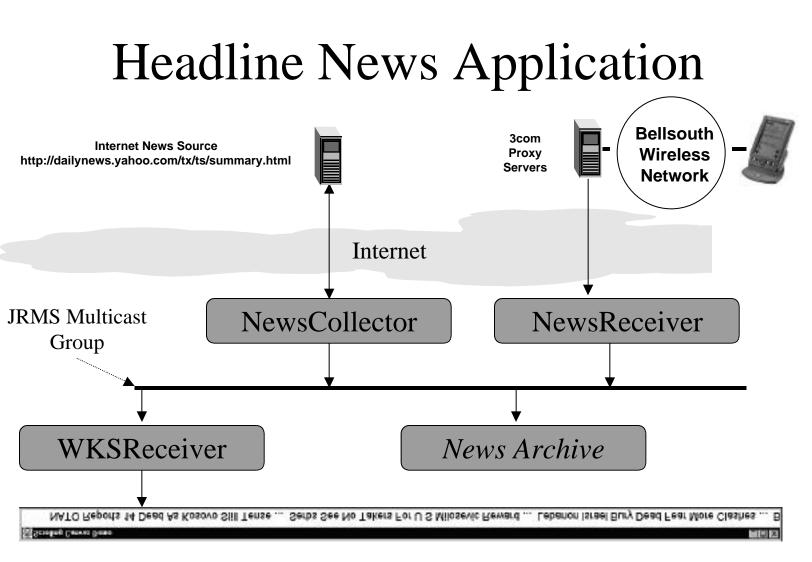
- A Palm pilot with a built in wireless receiver/transmitter.
- The wireless network is not active all the time
 - Power concerns
 - Impossible to *call/page* the Palm Pilot
- Programming
 - PQAs
 - Java (Spotless/Kjava)

Bellsouth Wireless Network

4/6/01

Limitations

• Currently libraries exist only for wireless transfer via http

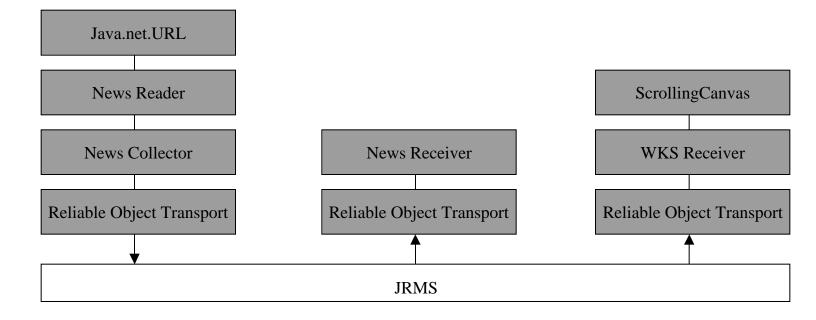

– Sockets are possible when using the cradle

- Palm based network applications must *pull* data, data cannot be pushed to the palm
- PQAs are the primary means of web access
- No debugging support for Java on the Palm

RIT/SUN Project

- Applied research collaboration between SUN Microsystems and RIT

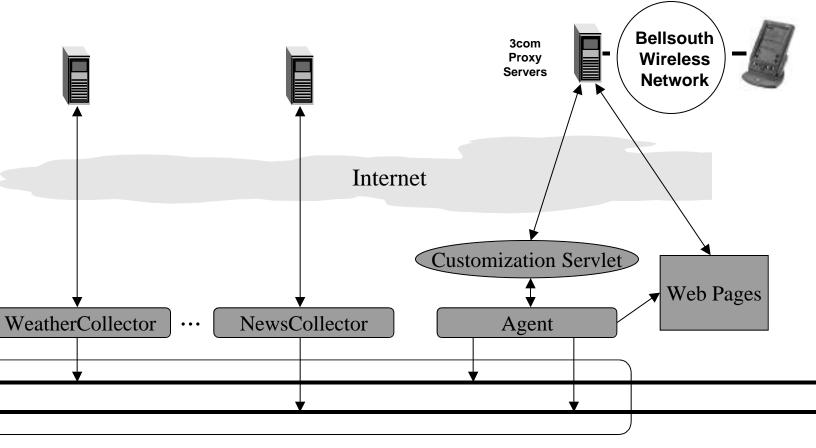
 Part of the RIT First in Class Initiative
- Primarily interested in wireless networking and IP multicast applications
- Consists of RIT CS faculty students, and staff from SUN



ICSS420 Broadcast/Multicasting

48

Software Architecture



4/6/01

ICSS420 Broadcast/Multicasting

49

Agent Architecture

Current Projects

- Multimedia Conferencing
- Student Registration Information
- SunSpot/Kjava Debugger
- JRMS Stress Testing

References

- P. Rosenzweig, M. Kadansky, S. Hanna, *The Java Reliable Multicast Service: A Reliable Multicast Library*, Sun Microsystems Laboratories, SMLI TR-98-68, September 1998.
- D. Chiu, S. Hurst, M. Kadansky, J. Wesley, *TRAM: A Tree-based Reliable Multicast Protocol*, Sun Microsystems Laboratories, SMLI TR-98-66, July 1998.
- M. Kadansky, D. Chiu, J. Wesley, J. Provino, *Tree-based Reliable Multicast (TRAM)*, draft-kadansky-tram-01, Internet Draft, September 1999.
- T. Liao, *Light-Weight Reliable Multicast Protocol*, http://webcanal.inria.fr/lrmp.

4/6/01