Problems 1.7-20. Do not do the problem as stated in the textbook. Modify it as follows. Use the parameter values $k=0.3, N=2500$, so that the differential equation becomes

$$
\frac{d P}{d t}=0.3 P\left(1-\frac{P}{2500}\right)-C
$$

where $P=P(t)$ is the fish population in a lake at time t years and C is the annual fishing rate.
a. Suppose the average catch of a fisherman/woman with a license is 3 fish per year. What is the largest number of licenses that can be issued if the fish are to have a chance of surviving in the lake? (Note: The number of fishing licenses must be a whole number.)
b. Now suppose the number of fishing licenses in part a is issued. What happens to the fish population? In particular, how does the behavior of the population depend on the initial population?

