Consider the linear system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=-4 x+2 y \\
& \frac{d y}{d t}=\quad x-3 y .
\end{aligned}
$$

1. Find the equilibrium solutions.
2. Write the system in matrix form $\frac{d Y}{d t}=A Y$.
3. Calculate the eigenvalues and eigenvectors of the matrix A.
4. Use the eigenvalues and eigenvectors to write down two linearly independent straight-line solutions to the system of differential equations.
5. Use the two linearly independent straight-line solutions to write the general solution to the system.
6. Find the particular solution satisfying the initial condition $x(0)=2, y(0)=-4$.
7. Using pplane or HPGSystemSolver or other suitable software, sketch the phase portrait of the system. On the phase portrait, include the two straight-line solutions from \#4 and the particular solution from $\# 6$. Highlight and label these solutions. Also, mark the equilibrium solutions.
8. What happens to solutions as t gets large? Be as specific as you can.

