Section 13.4. Consider a vibrating elastic string whose left end is free and whose right end is fixed. ("Free" means that the end is attached to a frictionless vertical track and is free to move up and down.) The corresponding initial-boundary-value problem is

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L, \quad t>0 \\
& \frac{\partial u}{\partial x}(0, t)=0=u(L, t), \quad t>0 \\
& u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=g(x), \quad 0<x<L
\end{aligned}
$$

Solve this initial-boundary-value problem for

$$
L=\frac{\pi}{2}, \quad f(x)=1-\frac{2 x}{\pi}, \quad g(x)=0
$$

