Weaving versus Blending: a quantitative assessment of the informationnatringing gapacities oftdoworaltennatigke methods for conveying multivariate data with color

Motivation

Numerous applications require an integrated understanding of the values of multiple scalar variables defined at densely sampled locations over a common domain. For

 each variable, via a acolor scale that continuously varies in luminance and/or saturation level, in individual images that are either: simultaneously displayed side by side, sequentially
displayed in the same location and interactively shuffled, or made semi.transparent and layered on top of one another, or 2) to encode the values of all of the multiple variables at each point into an icon or texture pattern that is then displayed over a small region of the domain around each sample point.
In this poster, we present the results of a series of experiments that seek to quantitatively assess the relative effec
blending (the most common default approach), in which a single composite color is used to convey the values of multiple colore-encoded quantities; and color weaving (a recently beneloped approach), in which the individual colors of multiple variables are separately woven into a fine-grained texture pattern.
dever

Experiment 0 - Goals and Method
The goal of our first experiment was to assess participants' baseline ability to accurately read numerical data encoded via the intensity of a single displayed color. We
rreated six different perceptually linear single-hued color ramps, defined by continuous variations in the luminance and saturation values of each of six different base colors. We defined the base colors by choosing six evenly spaced points around a circle of constant saturation in a plane of constant luminance in a region of the La*** color space that it within our monitor gamut.

We recruited nine participants with normal color vision for this baseline experiment. Participants color vision ability was assessed using an online version of a collection of Ishihara plates, the validity of a subset of which had been informally assessed for us by a person with known red-green color perception deficiencies.
he stimuli consisted of six maps of the twelve midwestern United States, in which each state was filled
 ssignment of data values to states was randomized to prevent people from using domain k nowlededge abo the midwestem US to increase the accuracy of their responses. The six data distributions were: median population that had praduatuated from college, percentage of the population living scholow percentage of ooverty the nedian cost of a single family dwelling, and home ownership pate. On each trial in this experiment, the participan's's task was to identify the value of a particular data attribute for a particular state byy reading the
color from the map, setting s slider to the matching color on the provided color scale, and then clicking on
ond the state to indicate that their selection is ifinal. Figure 1 (right) shows s a creen shot trom one trial. All particicants were provided with a printed outline map showing
all trials on which the state was mis-identified were discarded.

Experiment 2 - Goals and Methods

Because the color values that we used in experiment 1 were defined according to actual data values, the distribution of measurements that we collected - while highly representative of what ould be encountered in a typical visualization application - was not sufficient to answer all of the questions that came up about peoples' ability (or inability) to accurately decompose a

 eading of color combinations in which the luminance values of the indivivual components are nearly equal, moderately close, or relatively rety widely seaperarted? The figures below show some

Experiment 1 - Goals and Methods

Once we nad estabished baseeine level for the expected accurracy wint which participants could read a single data value from a univariate color map, we were ready to eest the abilites of participats
to read multiple data values from a multi-variate visual representation. We recruited eighteen participants for this experiment half of whom had also participated in experiment 0 . The stimuli in experiment 1 consisted of a series of maps of the twelve midwestern United States in which the values of either two, three, four or six different data distributions were simultaneously
represented via either color-blending in which the separate color layers were made semi-transparent and then overlaid to forma a single composite ereresentataion or color-weaving in which the separate color layers were individually sampled at independent pixels defined by a random noise function and them stitched together to form a finely patchworked, unified representation. We tested noise patterns of two different spatial frequencies: small noisese in which each 'pixel' subtended 3 minutes of visual angle, and large noise, in which each pixel subtended 6 minutes of visual angle, ant
participants viewed all images from fixed position enforced by a chin rest Screen shots of the sample simuli are shown below?
participants viewed all i

Experiment 2 - Results

Discussion

The results of our three experiments indicate that color weaving is consistently more effective than color blending for conveying the values of indivividual data distributuone
in a multivariate visualization. in a multivariate visualization. Error r rates remain low for woven combinations of 2,
and 4 different colors and only begin to rise to s statisicilly significant textentwhen
the number of component collors increases to six. . This advantage exists despite the potential of complications due to simultaneous contrast effects, and persists even when the area subtended by each patch of continuous color is very smal.
Although the problem of infering the values of the component colors in a blended mixturu is isherently ill-posed, observers are able to perform this task fairly accurately, within a moderately constrinend domain, when presented with paris of component colors that have nearly equal luminance values, although errors sise as the luminance
values of the component col los begin to differ. We found no significant advantages, in either color blending or color weaving, to
using color scales based on component hues that are more widely separated in La $\mathrm{L}^{*} \mathrm{~b}$ color space. On the contrary, we found some indications that extra difficiculties may
arise when opponent hues are employed.

