22

Elementary Graph Algorithms

This chapter presents methods for representing a graph and for searching a graph.
Searching a graph means systematically following the edges of the graph so as to
visit the vertices of the graph. A graph-searching algorithm can discover much
about the structure of a graph. Many algorithms begin by searching their input
graph to obtain this structural information. Several other graph algorithms elabo-
rate on basic graph searching. Techniques for searching a graph lie at the heart of
the field of graph algorithms.

Section 22.1 discusses the two most common computational representations of
graphs: as adjacency lists and as adjacency matrices. Section 22.2 presents a sim-
ple graph-searching algorithm called breadth-first search and shows how to cre-
ate a breadth-first tree. Section 22.3 presents depth-first search and proves some
standard results about the order in which depth-first search visits vertices. Sec-
tion 22.4 provides our first real application of depth-first search: topologically sort-
ing a directed acyclic graph. A second application of depth-first search, finding the
strongly connected components of a directed graph, is the topic of Section 22.5.

22.1 Representations of graphs

We can choose between two standard ways to represent a graph G = (V. E):
as a collection of adjacency lists or as an adjacency matrix. Either way applies
to both directed and undirected graphs. Because the adjacency-list representation
provides a compact way to represent sparse graphs—those for which [E| is much
less than |V/|*—it is usually the method of choice. Most of the graph algorithms
presented in this book assume that an input graph is represented in adjacency-
list form. We may prefer an adjacency-matrix representation, however, when the
graph is dense— | E| is close to |V |*—or when we need to be able to tell quickly
if there is an edge connecting two given vertices. For example, two of the all-pairs

590 Chapter 22 Elementary Graph Algorithms

123 45

12 P5]/] 10100 1

(1) (2) AESNESEEEH N 201 0 1 11

'.9 3| P2 P{el] 310 10 10

4| 2] Ps5] P3]/] 410 1 1 0 1

(5 (4) s el P2l s/1 1010
(a) (b) (c)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation

of G.
- 1 23456
1| 2] 1/01 0100
2| {51/] 200 000 1 0
(D (2) (3) 3| 6] 310 000 1 1
4| 2]/] 4]0 100 0 0
5| el 5o oo 100
(4) (5) (61 6 16]1/] 6/0 000 0 1
(2) (b) (©)

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation of G.

shortest-paths algorithms presented in Chapter 25 assume that their input graphs
are represented by adjacency matrices.

The adjacency-list representation of a graph G = (V, E) consists of an ar-
ray Adj of |V| lists, one for each vertex in V. For each u € V, the adjacency list
Adj[u] contains all the vertices v such that there is an edge (u,v) € E. That is,
Adj[u] consists of all the vertices adjacent to u in G. (Alternatively, it may contain
pointers to these vertices.) Since the adjacency lists represent the edges of a graph,
in pseudocode we treat the array Adj as an attribute of the graph, just as we treat
the edge set E. In pseudocode, therefore, we will see notation such as G.Adju].
Figure 22.1(b) is an adjacency-list representation of the undirected graph in Fig-
ure 22.1(a). Similarly, Figure 22.2(b) is an adjacency-list representation of the
directed graph in Figure 22.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists is |E|,
since an edge of the form (u, v) is represented by having v appear in Adjju]. If G is

22.1 Representations of graphs 591

an undirected graph, the sum of the lengths of all the adjacency lists is 2 | E|, since
if (u, v) is an undirected edge, then u appears in v’s adjacency list and vice versa.
For both directed and undirected graphs, the adjacency-list representation has the
desirable property that the amount of memory it requires is (V' + E).

We can readily adapt adjacency lists to represent weighted graphs, that is, graphs
for which each edge has an associated weight, typically given by a weight function
w : E — R. For example, let G = (V, E) be a weighted graph with weight
function w. We simply store the weight w(u,v) of the edge (u,v) € E with
vertex v in u’s adjacency list. The adjacency-list representation is quite robust in
that we can modify it to support many other graph variants.

A potential disadvantage of the adjacency-list representation is that it provides
no quicker way to determine whether a given edge (u,v) is present in the graph
than to search for v in the adjacency list Adj[u]. An adjacency-matrix representa-
tion of the graph remedies this disadvantage, but at the cost of using asymptotically
more memory. (See Exercise 22.1-8 for suggestions of variations on adjacency lists
that permit faster edge lookup.)

For the adjacency-matrix representation of a graph G = (V, E), we assume
that the vertices are numbered 1,2, ..., |V| in some arbitrary manner. Then the
adjacency-matrix representation of a graph G consists of a |V| x |V| matrix
A = (a;;) such that

P 1 if(i,j)eE,
Y)0 otherwise .

Figures 22.1(c) and 22.2(c) are the adjacency matrices of the undirected and di-
rected graphs in Figures 22.1(a) and 22.2(a), respectively. The adjacency matrix of
a graph requires ©(V?) memory, independent of the number of edges in the graph.

Observe the symmetry along the main diagonal of the adjacency matrix in Fig-
ure 22.1(c). Since in an undirected graph, (u,v) and (v,u) represent the same
edge, the adjacency matrix A of an undirected graph is its own transpose: A = AT,
In some applications, it pays to store only the entries on and above the diagonal of
the adjacency matrix, thereby cutting the memory needed to store the graph almost
in half.

Like the adjacency-list representation of a graph, an adjacency matrix can repre-
sent a weighted graph. For example, if G = (V, E) is a weighted graph with edge-
weight function w, we can simply store the weight w(u, v) of the edge (u,v) € E
as the entry in row u and column v of the adjacency matrix. If an edge does not
exist, we can store a NIL value as its corresponding matrix entry, though for many
problems it is convenient to use a value such as 0 or co.

Although the adjacency-list representation is asymptotically at least as space-
efficient as the adjacency-matrix representation, adjacency matrices are simpler,
and so we may prefer them when graphs are reasonably small. Moreover, adja-

592

Chapter 22 Elementary Graph Algorithms

cency matrices carry a further advantage for unweighted graphs: they require only
one bit per entry.

Representing attributes

Most algorithms that operate on graphs need to maintain attributes for vertices
and/or edges. We indicate these attributes using our usual notation, such as v.d
for an attribute d of a vertex v. When we indicate edges as pairs of vertices, we
use the same style of notation. For example, if edges have an attribute f, then we
denote this attribute for edge (u, v) by (u, v).f. For the purpose of presenting and
understanding algorithms, our attribute notation suffices.

Implementing vertex and edge attributes in real programs can be another story
entirely. There is no one best way to store and access vertex and edge attributes.
For a given situation, your decision will likely depend on the programming lan-
guage you are using, the algorithm you are implementing, and how the rest of your
program uses the graph. If you represent a graph using adjacency lists, one design
represents vertex attributes in additional arrays, such as an array d[1..|V|] that
parallels the Adj array. If the vertices adjacent to u are in Adj[u], then what we call
the attribute u.d would actually be stored in the array entry d [u]. Many other ways
of implementing attributes are possible. For example, in an object-oriented pro-
gramming language, vertex attributes might be represented as instance variables
within a subclass of a Vertex class.

Exercises

22.1-1

Given an adjacency-list representation of a directed graph, how long does it take
to compute the out-degree of every vertex? How long does it take to compute the
in-degrees?

22.1-2

Give an adjacency-list representation for a complete binary tree on 7 vertices. Give
an equivalent adjacency-matrix representation. Assume that vertices are numbered
from 1 to 7 as in a binary heap.

22.13

The transpose of a directed graph G = (V, E) is the graph GT = (V, ET), where
ET = {(v,u) e V. xV : (u,v) € E}. Thus, GT is G with all its edges reversed.
Describe efficient algorithms for computing G from G, for both the adjacency-
list and adjacency-matrix representations of G. Analyze the running times of your
algorithms.

22.1 Representations of graphs 593

22.14

Given an adjacency-list representation of a multigraph G = (V, E), describe an
O(V + E)-time algorithm to compute the adjacency-list representation of the
“equivalent” undirected graph G’ = (V, E’), where E’ consists of the edges in £
with all multiple edges between two vertices replaced by a single edge and with all
self-loops removed.

22.1-5

The square of a directed graph G = (V, E) is the graph G? = (V, E?) such that
(u,v) € E?if and only G contains a path with at most two edges between u and v.
Describe efficient algorithms for computing G2 from G for both the adjacency-
list and adjacency-matrix representations of G. Analyze the running times of your
algorithms.

22.1-6

Most graph algorithms that take an adjacency-matrix representation as input re-
quire time £2(V'?), but there are some exceptions. Show how to determine whether
a directed graph G contains a universal sink—a vertex with in-degree |V'| — 1 and
out-degree 0—in time O(V), given an adjacency matrix for G.

22.1-7
The incidence matrix of a directed graph G = (V, E) with no self-loops is a
|V'| x | E| matrix B = (b;;) such that

—1 ifedge j leaves vertex i ,
b;j =1 ifedge j enters vertex i ,
0 otherwise .

Describe what the entries of the matrix product BBT represent, where BT is the
transpose of B.

22.1-8

Suppose that instead of a linked list, each array entry Adj[u] is a hash table contain-
ing the vertices v for which (u, v) € E. If all edge lookups are equally likely, what
is the expected time to determine whether an edge is in the graph? What disadvan-
tages does this scheme have? Suggest an alternate data structure for each edge list
that solves these problems. Does your alternative have disadvantages compared to
the hash table?

594

Chapter 22 Elementary Graph Algorithms

22.2 Breadth-first search

Breadth-first search is one of the simplest algorithms for searching a graph and
the archetype for many important graph algorithms. Prim’s minimum-spanning-
tree algorithm (Section 23.2) and Dijkstra’s single-source shortest-paths algorithm
(Section 24.3) use ideas similar to those in breadth-first search.

Given a graph G = (V, E) and a distinguished source vertex s, breadth-first
search systematically explores the edges of G to “discover” every vertex that is
reachable from s. It computes the distance (smallest number of edges) from s
to each reachable vertex. It also produces a “breadth-first tree” with root s that
contains all reachable vertices. For any vertex v reachable from s, the simple path
in the breadth-first tree from s to v corresponds to a “shortest path” from s to v
in G, that is, a path containing the smallest number of edges. The algorithm works
on both directed and undirected graphs.

Breadth-first search is so named because it expands the frontier between discov-
ered and undiscovered vertices uniformly across the breadth of the frontier. That
is, the algorithm discovers all vertices at distance k from s before discovering any
vertices at distance kK + 1.

To keep track of progress, breadth-first search colors each vertex white, gray, or
black. All vertices start out white and may later become gray and then black. A
vertex is discovered the first time it is encountered during the search, at which time
it becomes nonwhite. Gray and black vertices, therefore, have been discovered, but
breadth-first search distinguishes between them to ensure that the search proceeds
in a breadth-first manner.! If (u,v) € E and vertex u is black, then vertex v
is either gray or black: that is, all vertices adjacent to black vertices have been
discovered. Gray vertices may have some adjacent white vertices; they represent
the frontier between discovered and undiscovered vertices.

Breadth-first search constructs a breadth-first tree, initially containing only its
root, which is the source vertex s. Whenever the search discovers a white vertex v
in the course of scanning the adjacency list of an already discovered vertex u, the
vertex v and the edge (u, v) are added to the tree. We say that u is the predecessor
or parent of v in the breadth-first tree. Since a vertex is discovered at most once, it
has at most one parent. Ancestor and descendant relationships in the breadth-first
tree are defined relative to the root s as usual: if u is on the simple path in the tree
from the root s to vertex v, then u is an ancestor of v and v is a descendant of u.

'We distinguish between gray and black vertices to help us understand how breadth-first search op-
erates. In fact, as Exercise 22.2-3 shows, we would get the same result even if we did not distinguish
between gray and black vertices.

22.2 Breadth-first search 595

The breadth-first-search procedure BFS below assumes that the input graph
G = (V,E) is represented using adjacency lists. It attaches several additional
attributes to each vertex in the graph. We store the color of each vertex u € V
in the attribute u.color and the predecessor of u in the attribute u.7. If u has no
predecessor (for example, if ¥ = s or u has not been discovered), then u.77 = NIL.
The attribute u.d holds the distance from the source s to vertex u computed by the
algorithm. The algorithm also uses a first-in, first-out queue Q (see Section 10.1)
to manage the set of gray vertices.

BFS(G,s)
1 foreach vertex u € G.V — {s}

2 u.color = WHITE
3 u.d = oo

4 u.7w = NIL

5 s.color = GRAY

6 s.d=20

7 s.m = NIL

8 0=90

9 ENQUEUE(Q,s)
10 while Q # @

11 u = DEQUEUE(Q)

12 for each v € G.Adj[u]

13 if v.color == WHITE
14 v.color = GRAY
15 v.d =u.d+1
16 VT = U

17 ENQUEUE(Q, v)
18 u.color = BLACK

Figure 22.3 illustrates the progress of BFS on a sample graph.

The procedure BFS works as follows. With the exception of the source vertex s,
lines 1-4 paint every vertex white, set u.d to be infinity for each vertex u, and set
the parent of every vertex to be NIL. Line 5 paints s gray, since we consider it to be
discovered as the procedure begins. Line 6 initializes s.d to 0, and line 7 sets the
predecessor of the source to be NIL. Lines 8-9 initialize Q to the queue containing
just the vertex s.

The while loop of lines 10-18 iterates as long as there remain gray vertices,
which are discovered vertices that have not yet had their adjacency lists fully ex-
amined. This while loop maintains the following invariant:

At the test in line 10, the queue Q consists of the set of gray vertices.

596

®)~

P O -©®

=)

Chapter 22 Elementary Graph Algorithms

0 |w|r]

No-
N
&
‘e
€
N

(@@

™. .
AN

OO
<
S
=
OMO

D=0 (o
0 @ "‘ 0
1 2 2

2 2 2

=}

0

[—}
- H\‘NN =
Q
=
<
=
S
.
(—)
\‘~
N

1 (=) 2 2 3 2 @—€ 2 3 3
w y v w X y

N u r N t u

303 3

w X y v w X y

N t u

Q0 0
w X y

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. The value of u.d appears within each vertex u. The queue Q is shown at the
beginning of each iteration of the while loop of lines 10-18. Vertex distances appear below vertices
in the queue.

Although we won’t use this loop invariant to prove correctness, it is easy to see
that it holds prior to the first iteration and that each iteration of the loop maintains
the invariant. Prior to the first iteration, the only gray vertex, and the only vertex
in Q, is the source vertex s. Line 11 determines the gray vertex u at the head of
the queue Q and removes it from Q. The for loop of lines 12—17 considers each
vertex v in the adjacency list of u. If v is white, then it has not yet been discovered,
and the procedure discovers it by executing lines 14-17. The procedure paints
vertex v gray, sets its distance v.d to u.d+1, records u as its parent v. 7, and places
it at the tail of the queue Q. Once the procedure has examined all the vertices on u’s

22.2 Breadth-first search 597

adjacency list, it blackens u in line 18. The loop invariant is maintained because
whenever a vertex is painted gray (in line 14) it is also enqueued (in line 17), and
whenever a vertex is dequeued (in line 11) it is also painted black (in line 18).

The results of breadth-first search may depend upon the order in which the neigh-
bors of a given vertex are visited in line 12: the breadth-first tree may vary, but the
distances d computed by the algorithm will not. (See Exercise 22.2-5.)

Analysis

Before proving the various properties of breadth-first search, we take on the some-
what easier job of analyzing its running time on an input graph G = (V, E'). We
use aggregate analysis, as we saw in Section 17.1. After initialization, breadth-first
search never whitens a vertex, and thus the test in line 13 ensures that each vertex
is enqueued at most once, and hence dequeued at most once. The operations of
enqueuing and dequeuing take O(1) time, and so the total time devoted to queue
operations is O(V'). Because the procedure scans the adjacency list of each vertex
only when the vertex is dequeued, it scans each adjacency list at most once. Since
the sum of the lengths of all the adjacency lists is ®(FE), the total time spent in
scanning adjacency lists is O(E). The overhead for initialization is O(V'), and
thus the total running time of the BFS procedure is O(V + E). Thus, breadth-first
search runs in time linear in the size of the adjacency-list representation of G.

Shortest paths

At the beginning of this section, we claimed that breadth-first search finds the dis-
tance to each reachable vertex in a graph G = (V, E) from a given source vertex
s € V. Define the shortest-path distance (s, v) from s to v as the minimum num-
ber of edges in any path from vertex s to vertex v; if there is no path from s to v,
then 8(s,v) = oo. We call a path of length §(s.v) from s to v a shortest path’
from s to v. Before showing that breadth-first search correctly computes shortest-
path distances, we investigate an important property of shortest-path distances.

2In Chapters 24 and 25, we shall generalize our study of shortest paths to weighted graphs, in which
every edge has a real-valued weight and the weight of a path is the sum of the weights of its con-
stituent edges. The graphs considered in the present chapter are unweighted or, equivalently, all
edges have unit weight.

