22 Elementary Graph Algorithms This chapter presents methods for representing a graph and for searching a graph. Searching a graph means systematically following the edges of the graph so as to visit the vertices of the graph. A graph-searching algorithm can discover much about the structure of a graph. Many algorithms begin by searching their input graph to obtain this structural information. Several other graph algorithms elaborate on basic graph searching. Techniques for searching a graph lie at the heart of the field of graph algorithms. Section 22.1 discusses the two most common computational representations of graphs: as adjacency lists and as adjacency matrices. Section 22.2 presents a simple graph-searching algorithm called breadth-first search and shows how to create a breadth-first tree. Section 22.3 presents depth-first search and proves some standard results about the order in which depth-first search visits vertices. Section 22.4 provides our first real application of depth-first search: topologically sorting a directed acyclic graph. A second application of depth-first search, finding the strongly connected components of a directed graph, is the topic of Section 22.5. ## 22.1 Representations of graphs We can choose between two standard ways to represent a graph G=(V,E): as a collection of adjacency lists or as an adjacency matrix. Either way applies to both directed and undirected graphs. Because the adjacency-list representation provides a compact way to represent *sparse* graphs—those for which |E| is much less than $|V|^2$ —it is usually the method of choice. Most of the graph algorithms presented in this book assume that an input graph is represented in adjacency-list form. We may prefer an adjacency-matrix representation, however, when the graph is dense-|E| is close to $|V|^2$ —or when we need to be able to tell quickly if there is an edge connecting two given vertices. For example, two of the all-pairs **Figure 22.1** Two representations of an undirected graph. (a) An undirected graph G with 5 vertices and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G. **Figure 22.2** Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G. shortest-paths algorithms presented in Chapter 25 assume that their input graphs are represented by adjacency matrices. The *adjacency-list representation* of a graph G = (V, E) consists of an array Adj of |V| lists, one for each vertex in V. For each $u \in V$, the adjacency list Adj[u] contains all the vertices v such that there is an edge $(u, v) \in E$. That is, Adj[u] consists of all the vertices adjacent to u in G. (Alternatively, it may contain pointers to these vertices.) Since the adjacency lists represent the edges of a graph, in pseudocode we treat the array Adj as an attribute of the graph, just as we treat the edge set E. In pseudocode, therefore, we will see notation such as G.Adj[u]. Figure 22.1(b) is an adjacency-list representation of the undirected graph in Figure 22.1(a). Similarly, Figure 22.2(b) is an adjacency-list representation of the directed graph in Figure 22.2(a). If G is a directed graph, the sum of the lengths of all the adjacency lists is |E|, since an edge of the form (u, v) is represented by having v appear in Adj[u]. If G is an undirected graph, the sum of the lengths of all the adjacency lists is 2|E|, since if (u, v) is an undirected edge, then u appears in v's adjacency list and vice versa. For both directed and undirected graphs, the adjacency-list representation has the desirable property that the amount of memory it requires is $\Theta(V + E)$. We can readily adapt adjacency lists to represent *weighted graphs*, that is, graphs for which each edge has an associated *weight*, typically given by a *weight function* $w: E \to \mathbb{R}$. For example, let G = (V, E) be a weighted graph with weight function w. We simply store the weight w(u, v) of the edge $(u, v) \in E$ with vertex v in u's adjacency list. The adjacency-list representation is quite robust in that we can modify it to support many other graph variants. A potential disadvantage of the adjacency-list representation is that it provides no quicker way to determine whether a given edge (u, v) is present in the graph than to search for v in the adjacency list Adj[u]. An adjacency-matrix representation of the graph remedies this disadvantage, but at the cost of using asymptotically more memory. (See Exercise 22.1-8 for suggestions of variations on adjacency lists that permit faster edge lookup.) For the *adjacency-matrix representation* of a graph G = (V, E), we assume that the vertices are numbered 1, 2, ..., |V| in some arbitrary manner. Then the adjacency-matrix representation of a graph G consists of a $|V| \times |V|$ matrix $A = (a_{ij})$ such that $$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{otherwise}. \end{cases}$$ Figures 22.1(c) and 22.2(c) are the adjacency matrices of the undirected and directed graphs in Figures 22.1(a) and 22.2(a), respectively. The adjacency matrix of a graph requires $\Theta(V^2)$ memory, independent of the number of edges in the graph. Observe the symmetry along the main diagonal of the adjacency matrix in Figure 22.1(c). Since in an undirected graph, (u, v) and (v, u) represent the same edge, the adjacency matrix A of an undirected graph is its own transpose: $A = A^{T}$. In some applications, it pays to store only the entries on and above the diagonal of the adjacency matrix, thereby cutting the memory needed to store the graph almost in half. Like the adjacency-list representation of a graph, an adjacency matrix can represent a weighted graph. For example, if G = (V, E) is a weighted graph with edgeweight function w, we can simply store the weight w(u, v) of the edge $(u, v) \in E$ as the entry in row u and column v of the adjacency matrix. If an edge does not exist, we can store a NIL value as its corresponding matrix entry, though for many problems it is convenient to use a value such as 0 or ∞ . Although the adjacency-list representation is asymptotically at least as space-efficient as the adjacency-matrix representation, adjacency matrices are simpler, and so we may prefer them when graphs are reasonably small. Moreover, adja- cency matrices carry a further advantage for unweighted graphs: they require only one bit per entry. ## Representing attributes Most algorithms that operate on graphs need to maintain attributes for vertices and/or edges. We indicate these attributes using our usual notation, such as v.d for an attribute d of a vertex v. When we indicate edges as pairs of vertices, we use the same style of notation. For example, if edges have an attribute f, then we denote this attribute for edge (u, v) by (u, v).f. For the purpose of presenting and understanding algorithms, our attribute notation suffices. Implementing vertex and edge attributes in real programs can be another story entirely. There is no one best way to store and access vertex and edge attributes. For a given situation, your decision will likely depend on the programming language you are using, the algorithm you are implementing, and how the rest of your program uses the graph. If you represent a graph using adjacency lists, one design represents vertex attributes in additional arrays, such as an array d[1..|V|] that parallels the Adj array. If the vertices adjacent to u are in Adj[u], then what we call the attribute u.d would actually be stored in the array entry d[u]. Many other ways of implementing attributes are possible. For example, in an object-oriented programming language, vertex attributes might be represented as instance variables within a subclass of a Vertex class. #### **Exercises** ## 22.1-1 Given an adjacency-list representation of a directed graph, how long does it take to compute the out-degree of every vertex? How long does it take to compute the in-degrees? #### 22.1-2 Give an adjacency-list representation for a complete binary tree on 7 vertices. Give an equivalent adjacency-matrix representation. Assume that vertices are numbered from 1 to 7 as in a binary heap. #### 22.1-3 The *transpose* of a directed graph G = (V, E) is the graph $G^{\mathsf{T}} = (V, E^{\mathsf{T}})$, where $E^{\mathsf{T}} = \{(v, u) \in V \times V : (u, v) \in E\}$. Thus, G^{T} is G with all its edges reversed. Describe efficient algorithms for computing G^{T} from G, for both the adjacency-list and adjacency-matrix representations of G. Analyze the running times of your algorithms. #### 22.1-4 Given an adjacency-list representation of a multigraph G=(V,E), describe an O(V+E)-time algorithm to compute the adjacency-list representation of the "equivalent" undirected graph G'=(V,E'), where E' consists of the edges in E with all multiple edges between two vertices replaced by a single edge and with all self-loops removed. #### 22.1-5 The **square** of a directed graph G = (V, E) is the graph $G^2 = (V, E^2)$ such that $(u, v) \in E^2$ if and only G contains a path with at most two edges between u and v. Describe efficient algorithms for computing G^2 from G for both the adjacency-list and adjacency-matrix representations of G. Analyze the running times of your algorithms. #### 22.1-6 Most graph algorithms that take an adjacency-matrix representation as input require time $\Omega(V^2)$, but there are some exceptions. Show how to determine whether a directed graph G contains a *universal sink*—a vertex with in-degree |V|-1 and out-degree 0—in time O(V), given an adjacency matrix for G. ## 22.1-7 The *incidence matrix* of a directed graph G = (V, E) with no self-loops is a $|V| \times |E|$ matrix $B = (b_{ij})$ such that $$b_{ij} = \begin{cases} -1 & \text{if edge } j \text{ leaves vertex } i, \\ 1 & \text{if edge } j \text{ enters vertex } i, \\ 0 & \text{otherwise}. \end{cases}$$ Describe what the entries of the matrix product BB^{T} represent, where B^{T} is the transpose of B. #### 22.1-8 Suppose that instead of a linked list, each array entry Adj[u] is a hash table containing the vertices v for which $(u, v) \in E$. If all edge lookups are equally likely, what is the expected time to determine whether an edge is in the graph? What disadvantages does this scheme have? Suggest an alternate data structure for each edge list that solves these problems. Does your alternative have disadvantages compared to the hash table? ## 22.2 Breadth-first search **Breadth-first search** is one of the simplest algorithms for searching a graph and the archetype for many important graph algorithms. Prim's minimum-spanning-tree algorithm (Section 23.2) and Dijkstra's single-source shortest-paths algorithm (Section 24.3) use ideas similar to those in breadth-first search. Given a graph G=(V,E) and a distinguished **source** vertex s, breadth-first search systematically explores the edges of G to "discover" every vertex that is reachable from s. It computes the distance (smallest number of edges) from s to each reachable vertex. It also produces a "breadth-first tree" with root s that contains all reachable vertices. For any vertex v reachable from s, the simple path in the breadth-first tree from s to v corresponds to a "shortest path" from s to v in s, that is, a path containing the smallest number of edges. The algorithm works on both directed and undirected graphs. Breadth-first search is so named because it expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier. That is, the algorithm discovers all vertices at distance k from s before discovering any vertices at distance k+1. To keep track of progress, breadth-first search colors each vertex white, gray, or black. All vertices start out white and may later become gray and then black. A vertex is *discovered* the first time it is encountered during the search, at which time it becomes nonwhite. Gray and black vertices, therefore, have been discovered, but breadth-first search distinguishes between them to ensure that the search proceeds in a breadth-first manner. If $(u, v) \in E$ and vertex u is black, then vertex v is either gray or black; that is, all vertices adjacent to black vertices have been discovered. Gray vertices may have some adjacent white vertices; they represent the frontier between discovered and undiscovered vertices. Breadth-first search constructs a breadth-first tree, initially containing only its root, which is the source vertex s. Whenever the search discovers a white vertex v in the course of scanning the adjacency list of an already discovered vertex u, the vertex v and the edge (u, v) are added to the tree. We say that u is the **predecessor** or **parent** of v in the breadth-first tree. Since a vertex is discovered at most once, it has at most one parent. Ancestor and descendant relationships in the breadth-first tree are defined relative to the root s as usual: if s is on the simple path in the tree from the root s to vertex v, then s is an ancestor of s and v is a descendant of s. ¹We distinguish between gray and black vertices to help us understand how breadth-first search operates. In fact, as Exercise 22.2-3 shows, we would get the same result even if we did not distinguish between gray and black vertices. The breadth-first-search procedure BFS below assumes that the input graph G=(V,E) is represented using adjacency lists. It attaches several additional attributes to each vertex in the graph. We store the color of each vertex $u \in V$ in the attribute u.color and the predecessor of u in the attribute $u.\pi$. If u has no predecessor (for example, if u=s or u has not been discovered), then $u.\pi=\mathrm{NIL}$. The attribute u.d holds the distance from the source s to vertex u computed by the algorithm. The algorithm also uses a first-in, first-out queue Q (see Section 10.1) to manage the set of gray vertices. ``` BFS(G, s) 1 for each vertex u \in G.V - \{s\} 2 u.color = WHITE 3 u.d = \infty 4 u.\pi = NIL 5 s.color = GRAY s.d = 0 7 s.\pi = NIL O = \emptyset 9 ENQUEUE(Q, s) 10 while Q \neq \emptyset 11 u = \text{DEQUEUE}(Q) 12 for each v \in G.Adj[u] 13 if v.color == WHITE 14 v.color = GRAY 15 v.d = u.d + 1 16 v.\pi = u 17 ENQUEUE(Q, v) 18 u.color = BLACK ``` Figure 22.3 illustrates the progress of BFS on a sample graph. The procedure BFS works as follows. With the exception of the source vertex s, lines 1–4 paint every vertex white, set u.d to be infinity for each vertex u, and set the parent of every vertex to be NIL. Line 5 paints s gray, since we consider it to be discovered as the procedure begins. Line 6 initializes s.d to 0, and line 7 sets the predecessor of the source to be NIL. Lines 8–9 initialize Q to the queue containing just the vertex s. The **while** loop of lines 10–18 iterates as long as there remain gray vertices, which are discovered vertices that have not yet had their adjacency lists fully examined. This **while** loop maintains the following invariant: At the test in line 10, the queue Q consists of the set of gray vertices. **Figure 22.3** The operation of BFS on an undirected graph. Tree edges are shown shaded as they are produced by BFS. The value of u.d appears within each vertex u. The queue Q is shown at the beginning of each iteration of the **while** loop of lines 10–18. Vertex distances appear below vertices in the queue. Although we won't use this loop invariant to prove correctness, it is easy to see that it holds prior to the first iteration and that each iteration of the loop maintains the invariant. Prior to the first iteration, the only gray vertex, and the only vertex in Q, is the source vertex s. Line 11 determines the gray vertex u at the head of the queue Q and removes it from Q. The **for** loop of lines 12–17 considers each vertex v in the adjacency list of u. If v is white, then it has not yet been discovered, and the procedure discovers it by executing lines 14–17. The procedure paints vertex v gray, sets its distance v. d to u. d+1, records u as its parent v. π , and places it at the tail of the queue Q. Once the procedure has examined all the vertices on u's adjacency list, it blackens u in line 18. The loop invariant is maintained because whenever a vertex is painted gray (in line 14) it is also enqueued (in line 17), and whenever a vertex is dequeued (in line 11) it is also painted black (in line 18). The results of breadth-first search may depend upon the order in which the neighbors of a given vertex are visited in line 12: the breadth-first tree may vary, but the distances d computed by the algorithm will not. (See Exercise 22.2-5.) ### **Analysis** Before proving the various properties of breadth-first search, we take on the somewhat easier job of analyzing its running time on an input graph G = (V, E). We use aggregate analysis, as we saw in Section 17.1. After initialization, breadth-first search never whitens a vertex, and thus the test in line 13 ensures that each vertex is enqueued at most once, and hence dequeued at most once. The operations of enqueuing and dequeuing take O(1) time, and so the total time devoted to queue operations is O(V). Because the procedure scans the adjacency list of each vertex only when the vertex is dequeued, it scans each adjacency list at most once. Since the sum of the lengths of all the adjacency lists is O(E), the total time spent in scanning adjacency lists is O(E). The overhead for initialization is O(V), and thus the total running time of the BFS procedure is O(V + E). Thus, breadth-first search runs in time linear in the size of the adjacency-list representation of G. ## **Shortest paths** At the beginning of this section, we claimed that breadth-first search finds the distance to each reachable vertex in a graph G = (V, E) from a given source vertex $s \in V$. Define the *shortest-path distance* $\delta(s, \nu)$ from s to ν as the minimum number of edges in any path from vertex s to vertex ν ; if there is no path from s to ν , then $\delta(s, \nu) = \infty$. We call a path of length $\delta(s, \nu)$ from s to ν a *shortest path*² from s to ν . Before showing that breadth-first search correctly computes shortest-path distances, we investigate an important property of shortest-path distances. ²In Chapters 24 and 25, we shall generalize our study of shortest paths to weighted graphs, in which every edge has a real-valued weight and the weight of a path is the sum of the weights of its constituent edges. The graphs considered in the present chapter are unweighted or, equivalently, all edges have unit weight.