g Quicksort

The quicksort algorithm has a worst-case running time of ®(n?) on an input array
of n numbers. Despite this slow worst-case running time, quicksort is often the best
practical choice for sorting because it is remarkably efficient on the average: its
expected running time is ®(n g n), and the constant factors hidden in the ®(n lgn)
notation are quite small. It also has the advantage of sorting in place (see page 17),
and it works well even in virtual-memory environments.

Section 7.1 describes the algorithm and an important subroutine used by quick-
sort for partitioning. Because the behavior of quicksort is complex, we start with
an intuitive discussion of its performance in Section 7.2 and postpone its precise
analysis to the end of the chapter. Section 7.3 presents a version of quicksort that
uses random sampling. This algorithm has a good expected running time, and no
particular input elicits its worst-case behavior. Section 7.4 analyzes the random-
ized algorithm, showing that it runs in @(n?) time in the worst case and, assuming
distinct elements, in expected O(n lgn) time.

7.1 Description of quicksort

Quicksort, like merge sort, applies the divide-and-conquer paradigm introduced
in Section 2.3.1. Here is the three-step divide-and-conquer process for sorting a
typical subarray A[p..r]:

Divide: Partition (rearrange) the array A[p .. r] into two (possibly empty) subar-
rays A[p..q — 1] and A[g + 1..r] such that each element of A[p .. ¢ — 1] is
less than or equal to A[g], which is, in turn, less than or equal to each element
of Alg + 1..r]. Compute the index ¢ as part of this partitioning procedure.

Congquer: Sort the two subarrays A[p..q — 1] and A[g + 1..r] by recursive calls
to quicksort.
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Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array A[p ..r] is now sorted.

The following procedure implements quicksort:

QUICKSORT(A, p,r)

1 ifp<r

2 q = PARTITION(A, p, 1)
3 QUICKSORT(A4, p,qg — 1)
4 QUICKSORT(A,q + 1,r1)

To sort an entire array A, the initial call is QUICKSORT(A, 1, A.length).

Partitioning the array

The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray A[p ..r] in place.

PARTITION(A, p, 1)

I x = Alr]

2 i=p—1

3 forj =ptor —1

4 if A[j] <x

5 i =1i+1

6 exchange A[i] with A[/]
7 exchange A[i + 1] with A[r]

8 returni 4 1

Figure 7.1 shows how PARTITION works on an 8-element array. PARTITION
always selects an element x = A[r] as a pivot element around which to partition the
subarray A[p ..r]. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3—6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3-6, for any array
index k,

1. If p <k <i,then A[k] < x.

2.Ifi +1 <k <j—1,then Alk] > x.
3. If k = r, then A[k] = x.
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Figure 7.1 The operation of PARTITION on a sample array. Array entry A[r] becomes the pivot
element x. Lightly shaded array elements are all in the first partition with values no greater than x.
Heavily shaded elements are in the second partition with values greater than x. The unshaded el-
ements have not yet been put in one of the first two partitions, and the final white element is the
pivot x. (a) The initial array and variable settings. None of the elements have been placed in either
of the first two partitions. (b) The value 2 is “swapped with itself”” and put in the partition of smaller
values. (c)—(d) The values 8 and 7 are added to the partition of larger values. (e) The values 1 and 8
are swapped, and the smaller partition grows. (f) The values 3 and 7 are swapped, and the smaller
partition grows. (g)—(h) The larger partition grows to include 5 and 6, and the loop terminates. (i) In
lines 7-8, the pivot element is swapped so that it lies between the two partitions.

The indices between j and r — 1 are not covered by any of the three cases, and the
values in these entries have no particular relationship to the pivot x.

We need to show that this loop invariant is true prior to the first iteration, that
each iteration of the loop maintains the invariant, and that the invariant provides a
useful property to show correctness when the loop terminates.
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Figure 7.2 The four regions maintained by the procedure PARTITION on a subarray A[p ..r]. The
values in A[p ..i] are all less than or equal to x, the values in A[i + 1..j — 1] are all greater than x,
and A[r] = x. The subarray A[j ..r — 1] can take on any values.

Initialization: Prior to the first iteration of the loop,i = p — 1 and j = p. Be-
cause no values lie between p and i and no values lie betweeni + 1 and j — 1,
the first two conditions of the loop invariant are trivially satisfied. The assign-
ment in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, we consider two cases, depending on the
outcome of the test in line 4. Figure 7.3(a) shows what happens when A[j] > x;
the only action in the loop is to increment j. After j is incremented, condition 2
holds for A[j — 1] and all other entries remain unchanged. Figure 7.3(b) shows
what happens when A[j] < x; the loop increments i, swaps A[i] and A[/],
and then increments j. Because of the swap, we now have that A[i] < x, and
condition 1 is satisfied. Similarly, we also have that A[j — 1] > x, since the
item that was swapped into A[j — 1] is, by the loop invariant, greater than x.

Termination: At termination, j = r. Therefore, every entry in the array is in one
of the three sets described by the invariant, and we have partitioned the values
in the array into three sets: those less than or equal to x, those greater than x,
and a singleton set containing x.

The final two lines of PARTITION finish up by swapping the pivot element with
the leftmost element greater than x, thereby moving the pivot into its correct place
in the partitioned array, and then returning the pivot’s new index. The output of
PARTITION now satisfies the specifications given for the divide step. In fact, it
satisfies a slightly stronger condition: after line 2 of QUICKSORT, A[g] is strictly
less than every element of A[g + 1..r].

The running time of PARTITION on the subarray A[p..r]| is ©(n), where
n =r — p + 1 (see Exercise 7.1-3).

Exercises

7.1-1
Using Figure 7.1 as a model, illustrate the operation of PARTITION on the array
A=(13,19,9,5,12,8,7,4,21,2,6,11).



