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Abstract

We study the problem of exploration in
stochastic Multi-Armed Bandits. Even in
the simplest setting of identifying the best
arm, there remains a logarithmic multiplica-
tive gap between the known lower and upper
bounds for the number of arm pulls required
for the task. This extra logarithmic factor is
quite meaningful in nowadays large-scale ap-
plications. We present two novel, parameter-
free algorithms for identifying the best arm,
in two different settings: given a target con-
fidence and given a target budget of arm
pulls, for which we prove upper bounds whose
gap from the lower bound is only doubly-
logarithmic in the problem parameters. We
corroborate our theoretical results with ex-
periments demonstrating that our algorithm
outperforms the state-of-the-art and scales
better as the size of the problem increases.

1. Introduction

Exploration problems in stochastic Multi-Armed Ban-
dits (MAB) have received much attention recently (see
e.g. Even-Dar et al. 2006; Bubeck et al. 2009; Audib-
ert et al. 2010; Gabillon et al. 2012). In the best-arm
identification problem, the player repeatedly chooses
one arm (corresponding to an action), and receives
a reward drawn from a fixed probability distribution

†Most of this work was done while the author was at
Yahoo! Research.

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

corresponding to the chosen arm. At the end of this
exploration phase, the player must commit to a sin-
gle arm. Unlike the standard MAB setup where the
player’s strategy is evaluated in terms of its regret (e.g.
Lai & Robbins 1985; Auer et al. 2002), in the best-arm
identification setup the goal of the player is to maxi-
mize her probability of choosing the best arm having
the maximal expected reward.

The complexity of a MAB exploration problem is de-
termined by the total number of arms and difference
between their expected rewards and that of the opti-
mal arm. To date, in the setting where one is required
to find the optimal (or almost optimal) arm, there re-
mains a multiplicative gap between the lower and up-
per bounds over the number of arm pulls required for
the task, which is logarithmic in the problem parame-
ters.

Such extra logarithmic terms might entail a mean-
ingful drawback in large-scale applications, and algo-
rithms that are more asymptotically efficient are likely
to be the better choice. Indeed, over the past few
years MAB algorithms have been employed in an in-
creasing amount of web-scale applications. These in-
clude online ad selection (Chakrabarti et al., 2008),
web content optimization (Agarwal et al., 2009), user-
content matching (Pandey et al., 2007), learning
search-ranking from usage data (Radlinski et al., 2008)
and more. In many of these applications, the number
of arms may be very large and the number of available
arm pulls even more so. For example, an arm may
represent a specific combination of content items or
advertisements to be displayed on a web page, giving
rise to an extremely large number of arms.

In this work, we shorten the theoretic gap almost en-
tirely, leaving only doubly-logarithmic extra terms.
We consider two settings of recent interest: fixed confi-



Almost Optimal Exploration in Multi-Armed Bandits

dence and fixed budget, in which either the error prob-
ability or the number of arm pulls are fixed and the
goal is to minimize the other (see Gabillon et al. 2012).
In each setting, we present a new parameter-free algo-
rithm achieving the improved bound. Additionally, we
evaluate our algorithm empirically and compare it to
state of the art algorithms, in several realistic scenar-
ios and various scales. The experiments demonstrate
that our algorithm outperforms previous algorithms
and scales better as the complexity of the problem
grows.

1.1. Previous Work

The fixed confidence setting was first considered by
Even-Dar et al. (2002), who presented the Successive
Elimination strategy for the best-arm and ε-best arm
identification problems. Mannor & Tsitsiklis (2004)
provided tight, distribution-dependent lower bounds
for several variants of the PAC model. The setting
was revisited by Bubeck et al. (2009), who indicated
that regret-minimizing algorithms (like UCB of Auer
et al. 2002) are not well-suited for pure exploration
tasks. More recently, Audibert et al. (2010) addressed
the fixed budget setting and presented the algorithms
UCB-E and Successive Rejects for best-arm identifica-
tion, proved their optimality up to logarithmic factors,
and demonstrated their effectiveness in simulations.

Recently, some extensions of the explorative MAB
problem were studied by several authors. Bubeck et al.
(2013) considered the problem of multiple best-arm
identification and presented a variant of the Successive
Rejects algorithm that with high probability outputs
a set of m-best arms given a fixed budget of pulls.
They also presented extensions to their setting that
deal with arms having different variances. The re-
lated works of Kalyanakrishnan & Stone (2010) and
Kalyanakrishnan et al. (2012) studied the same prob-
lem in a fixed confidence PAC setup. Another related
setting was introduced by Gabillon et al. (2011), who
consider a multi-bandit MAB problem in which each
player has to identify the best arm in his sub-problem
and the challenge is to distribute the limited resources
at hand (namely T arm pulls) so as to maximize the
confidence of all players simultaneously.

Our work is related to (Gabillon et al., 2012), that also
consider both the fixed confidence and fixed budget
variants of the problem. While they aim at a unified
algorithmic approach for both setups, our goal is to
derive better algorithms and improved analysis for the
problem, treating each variant separately.

1.2. Overview of Our Approach

In this section we give a technical overview of our ap-
proach and methods, that enable us to avoid logarith-
mic factors in our upper bounds.

Our algorithms, in both the fixed confidence and fixed
budget settings, are based on sequential elimination of
arms. Specifically, the algorithms proceed in rounds,
where within a round the remaining arms are sam-
pled uniformly. At the end of each round, the arms
are eliminated according to some criteria; the process
continues until only a single arm remains.

The challenge we face when designing an efficient elim-
ination algorithm is the following: each elimination of
an arm should be made with high confidence, since an
eliminated arm is never revived. Hence, before an arm
is ruled out its reward should be estimated with high
confidence. Usually, this is accomplished by ensuring
that before each elimination, all arms are estimated
with high confidence, thereby requiring a union-bound
argument in the analysis and giving rise to logarithmic
factors in the resulting bound.

In order to circumvent this difficulty, we first aim at
reducing the number of elimination rounds. More im-
portantly, we design our estimators within each round
so as to only ensure that most (typically, a constant
fraction) of the remaining arms are sampled with high
confidence. Taking this path, we are able to avoid
most union-bound arguments being used in previous
works.

In the fixed confidence setting, we face an additional
difficulty. There, in order to eliminate a suboptimal
arm, we require an accurate estimation of its gap from
the best arm having the maximal reward. Instead of
establishing that by taking the maximum of the empir-
ical rewards of the surviving arms (as done in previous
works), we employ a subprocedure based on the Me-
dianElimination algorithm (see Section 2.1), giving
rise to a more efficient estimation.

2. Background and Statement of Our
Results

In the Multi-Armed Bandit (MAB) problem, a player
is given n arms, enumerated by [n] := {1, 2, . . . , n}.
Each arm i ∈ [n] is associated with a reward, which is
a random variable bounded in the interval [0, 1] with
expectation pi. For convenience, we assume that the
arms are ordered by their expected rewards, that is
p1 ≥ p2 ≥ · · · ≥ pn. At every time step t = 1, 2, . . .,
the player pulls one arm of her choice and observes an
independent sample of its reward. We use the notation
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∆i := p1−pi to denote the suboptimality gap of arm i,
and occasionally use ∆ := ∆2 for denoting the minimal
gap. Since we assume that the best arm is unique, we
have ∆i > 0 for all i > 1.

In the explorative setting, at the end of the game the
player must commit to a single arm; the goal of the
player is to choose the best arm (i.e. the arm hav-
ing the maximal expected reward) with maximal con-
fidence. As is standard, we shall henceforth assume
for simplicity that this best arm is unique1.

We now distinguish between two settings of interest:

• Fixed confidence: The player is given a target
confidence δ and his goal is to pull arms as few
times as possible in order to identify the best arm
with probability at least 1− δ.

• Fixed budget: Given a total budget of T arm
pulls, the player’s target is to maximize his prob-
ability of identifying the best arm correctly while
not pulling arms more than T times.

For the sake of consistency, we measure the quality of
our results in both the fixed confidence and fixed bud-
get settings by expressing the required budget of arm
pulls T as a function of the target error probability δ.
Mannor & Tsitsiklis (2004) have shown that for a wide
variety of reward setups and any MAB policy we have
that T = Ω(H log(1/δ)), where

H :=

n∑
i=2

1

∆2
i

.

As demonstrated in previous works (and in our exper-
iments), it seems that H indeed captures the complex-
ity of the problem. However, our analysis in the fixed
budget setting relies on the following related complex-
ity measure, introduced by Audibert et al. (2010):

H2 := max
i 6=1

i

∆2
i

.

It is not difficult to prove that the ratio H̃ := H/H2

has 1 ≤ H̃ ≤ ln 2n, and that both inequalities are in
general tight. As a result, our upper bound in the fixed
budget setting is not directly comparable to the above
lower bound; see Section 6 for a discussion.

Table 1 summarizes our theoretical results along with
a comparison to the previously known state-of-the-
art. The bounds are stated in comparison to the lower

1The case of multiple best-arms is more naturally cap-
tured by the PAC setup, in which we are interested in
finding an ε-best arm. Some of our results can be readily
extended to this setup; we defer details to the full version
of the paper.

Setting New Gap Previous Gap

Fixed δ O (log log(1/∆)) O (log(n/∆))

Fixed T O(H̃ log log n) O(H̃ log n)

Table 1. The performance of our algorithms compared to
the state-of-the-art. In both cases T is considered as a func-
tion of δ and the measure presented is the multiplicative
gap from the lower bound. The variable H̃ in the second
row depends on the relative structure of the expected re-
wards and is bounded between 1 and log 2n.

bound T = Ω(H log(1/δ)). That is, instead of stating
the required number of pulls we give the multiplicative
gap from this lower bound. The exact statements of
our results are given in Theorems 3.1 and 4.1 below.

2.1. The Median Elimination Algorithm

For our algorithm in the fixed confidence setting, we
require an approximate estimation procedure for the
maximal expected reward of a subset of arms, which is
more efficient than the empirical maximal reward. To
this end we employ the (ε, δ)-PAC algorithm Medi-
anElimination (see Even-Dar et al. 2006) described
in the following lemma.

Lemma 2.1 (Even-Dar et al. 2006). Given param-
eters ε, δ > 0 and a set S of n bandit arms,
MedianElimination(S, ε, δ) emits an ε-optimal arm
with probability at least 1 − δ by using a budget of at
most O((n/ε2) log(1/δ)) pulls.

We note that the analysis of MedianElimination
is inherently worst-case, and is independent of the
reward distributions. In Section 3 we show how
this algorithm can be used in conjunction with adap-
tive elimination techniques, in order to improve the
distribution-dependent upper bounds.

3. Fixed Confidence Setting

In this section we study the fixed confidence setting,
where the player is given a target confidence level δ
with a goal of using as few arm pulls as possible in
order to find the best arm with probability no less
than 1− δ.

The algorithm we propose in this setting is reminiscent
of sequential elimination algorithms; see Algorithm 1
for its precise description. The algorithm proceeds in
rounds, where in round r it aims at eliminating (1/2)r-
suboptimal arms2, i.e., arms i having ∆i > (1/2)r.

2A similar scheme was used by Auer & Ortner (2010)
for improving the regret bound of the UCB algorithm with
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Since we do not know the suboptimality of each arm,
we estimate it to the required accuracy by means of
the MedianElimination algorithm (see Section 2.1).
Also, as we show in the analysis below, our estimators
in each round are tuned only to ensure that most of the
suboptimal arms are eliminated with high probability,
instead of requiring that all of them are ruled out in
the particular round.

Algorithm 1 Exponential-Gap Elimination

input confidence δ > 0
1: initialize S1 ← [n], r ← 1
2: while |Sr| > 1 do
3: let εr = 2−r/4 and δr = δ/(50r3)
4: sample each arm i ∈ Sr for tr = (2/ε2r) ln(2/δr)

times, and let p̂ri be the average reward
5: invoke ir ← MedianElimination(Sr, εr/2, δr)

and let p̂r? = p̂rir
6: set Sr+1 ← Sr\{i ∈ Sr : p̂ri < p̂r? − εr}
7: update r ← r + 1
8: end while

output arm in Sr

Formally, we prove the following sample complexity
guarantee.

Theorem 3.1. With probability at least 1 − δ, Algo-
rithm 1 identifies the optimal arm using

O

(
n∑

i=2

1

∆2
i

log

(
1

δ
log

1

∆i

))

arm pulls.

We note that a simple modification3 of Algorithm 1
give rise to an (ε, δ)-PAC algorithm (i.e., algorithm
that finds an ε-optimal arm with probability ≥ 1− δ)
with similar, almost-optimal guarantees.

Theorem 3.2. There exists an algorithm that with
probability at least 1− δ, finds an ε-optimal arm using
at most

O

(
n∑

i=2

1

(∆ε
i )

2
log

(
1

δ
log

1

∆ε
i

))

arm pulls, where ∆ε
i := max{∆i, ε}.

For proving Theorem 3.1, we first establish few lem-
mas. First, it is easy to prove that with high probabil-
ity, the best arm is not eliminated by the algorithm.

respect to the gaps ∆i.
3Essentially, the only modification required is limit-

ing the number of rounds performed by the algorithm to
O(log(1/ε)).

Lemma 3.3. With probability at least 1−δ/5, we have
p̂r1 ≥ p̂r? − εr for all r.

Proof. First observe that for any arm i and round r,
we have by Hoeffding’s inequality

Pr[|p̂ri − pi| ≥ εr/2] ≤ 2 exp(−ε2rtr/2) = δr . (1)

Now consider round r, assuming that the best arm was
not eliminated previously. Since pir ≤ p1, from (1)
we have p̂r? < p1 + εr/2 with probability at least 1 −
δr. However, (1) also gives that p1 < p̂r1 + εr/2 with
probability at least 1 − δr, from which we conclude
that p̂r1 > p̂r? − εr with probability ≥ 1 − 2δr. The
lemma now follows from a union bound, noting that∑∞

r=1 2δr ≤
∑∞

r=1 2δ/(50r2) ≤ δ/5.

For the rest of the analysis we will need some addi-
tional notation. For all 0 ≤ s ≤ dlog2(1/∆)e, we define
the set

As = {i ∈ [n] : 2−s ≤ ∆i < 2−s+1} (2)

and let ns = |As|. Also, we denote the set of arms
from As surviving after round r by Sr,s = Sr ∩As, for
all r, s ≥ 0.

Our next step is to prove that from round s onwards,
a constant fraction of the surviving arms of the set As

is eliminated on each round.

Lemma 3.4. Assume that the optimal arm is not
eliminated by the algorithm. Then with probability
at least 1 − 4δ/5, we have |Sr,s| ≤ 1

8 |Sr−1,s| for all
1 ≤ s ≤ r.

Proof. Consider round r. The guarantees of the Me-
dianElimination algorithm (see Lemma 2.1) imply
that pir ≥ p1 − εr/2 with probability at least 1 − δr,
assuming that the best arm reached round r. Together
with (1), we have

Pr[p̂r? ≤ p1 − εr] ≤ 2δr . (3)

For any arm i with ∆i ≥ 2−r = 4εr, the event p̂ri ≥
p̂r?−εr implies that either p̂ri ≥ pi +εr or p̂r? ≤ p1−εr,
since otherwise

p̂ri < pi + εr ≤ p1 −∆i + 2εr ≤ p1 − 2εr < p̂r? − εr .

Hence, (1) and (3) give

Pr[p̂ri ≥ p̂r? − εr] ≤ Pr[p̂ri ≥ pi + εr] + Pr[p̂r? ≤ p1 − εr]

≤ 3δr

which means that an arm i ∈ As survives round r ≥ s
with probability at most 3δr. Consequently, we have
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E[|Sr,s|] ≤ 3δr|Sr−1,s|, and by applying Markov’s in-
equality we obtain that

Pr[|Sr,s| > 1
8 |Sr−1,s|] <

3δr|Sr−1,s|
1
8 |Sr−1,s|

= 24δr .

The lemma now follows via a union bound, by
which the probability of failure is bounded by∑∞

r=1

∑r
s=1 24δr =

∑∞
r=1 24δ/(50r2) < 4δ/5.

We next calculate how many times an arm from As is
pulled by the algorithm, ignoring (for now) the pulls
spent due to invocations of MedianElimination4.

Lemma 3.5. With probability at least 1− δ, the total
number of times an arm from As is sampled in line 4
is O (4sns log(s/δ)) for all s.

Proof. Let Ts denote the total number of times an arm
from As is pulled. By Lemma 3.4, if the algorithm is
successful we have

Ts =

∞∑
r=1

|Sr,s| · tr ≤
s−1∑
r=1

|As| · tr +

∞∑
r=s

|Sr,s| · tr

≤ ns
s−1∑
r=1

tr + ns

∞∑
r=0

( 1
8 )r+1tr+s .

Now, the first sum is upper bounded by

s−1∑
r=1

tr = 32

s−1∑
r=1

4r ln
100r3

δ
= O

(
4s log

s

δ

)
.

For the second sum, we have

∞∑
r=0

( 1
8 )r+1tr+s = 4s+1

∞∑
r=0

2−r ln
100(r + s)3

δ

≤ 3 · 4s+1 ln
4s

δ

∞∑
r=0

2−r

+ 3 · 4s+1
∞∑
r=1

2−r ln(5r)

= O
(

4s log
s

δ

)
.

This completes the proof.

We are now ready to prove Theorem 3.1.

Proof. We first prove that the algorithm is correct with
probability 1 − δ. Lemma 3.4 imply that any subop-
timal arm is eliminated eventually, while 3.3 ensures

4It is possible to re-use the same arms pulls issued by
Algorithm 1 (in line 4) within invocations of ME, without
any major changes in the analysis (independence of the
RVs in question is not needed).

that the best arm is never eliminated. Hence, the algo-
rithm terminates at some point and returns the correct
arm. By a union bound, this happens with probability
at least 1− δ.

We turn to compute the sample complexity of the al-
gorithm. Notice that the number of pulls spent by
the invocation of MedianElimination on round r is
O(|Sr−1| · tr), which is the same as the total number
of pulls used by the algorithm itself (in line 4) on that
round. Hence, the invocations of MedianElimina-
tion affect the overall sample complexity only by a
constant factor, and we may safely ignore the arm-
pulls associated with them. Now, Lemma 3.5 asserts
that, if the algorithm is successful, the number of times
it pulls an arm from As is Ts = O (4sns log(s/δ)) for
all s. Recalling that 2s < 2/∆i for all i ∈ As (see (2)),
we obtain

Ts = O
(

4sns log
s

δ

)
= O

(∑
i∈As

1

∆2
i

log

(
1

δ
log

1

∆i

))
and the theorem follows by summing over s.

4. Fixed Budget Setting

In this section we turn to discuss the setting in which
instead of targeting a given confidence δ, we are given
a fixed budget of T arm pulls with the goal of maxi-
mizing the probability of correct identification.

The algorithm we propose, which we call Sequential
Halving, is given in Algorithm 2. The strategy is
simple: we split the given budget evenly across log2 n
elimination rounds, and within a round we pull arms in
a uniform manner. At the end of a round, we rule out
the worst half of the arms. By inspecting the empirical
third quartile of the surviving arms at each round, we
are able to bound the probability of this strategy to
erroneously eliminate the best arm. Below we prove
that this algorithm achieves the following bounds.

Theorem 4.1. Algorithm 2 correctly identifies the
best arm with probability at least

1− 3 log2 n · exp

(
− T

8H2 log2 n

)
.

Alternatively, for succeeding with probability at least
1− δ, the algorithm needs a total of at most

T = O

(
H2 log n log

(
log n

δ

))
arm pulls.

To avoid technicalities and ease the reading, we hence-
forth assume that n is a power of 2. It is easy to ver-
ify that the analysis holds for any n. We begin with
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Algorithm 2 Sequential Halving

input total budget T
1: initialize S0 ← [n]
2: for r = 0 to dlog2 ne − 1 do
3: sample each arm i ∈ Sr for

tr =

⌊
T

|Sr| dlog2 ne

⌋
times, and let p̂ri be the average reward

4: let Sr+1 be the set of d|Sr|/2e arms in Sr with
the largest empirical average

5: end for
output arm in Sdlog2 ne

the following simple lemma, which follows immediately
from Hoeffding’s inequality (thus the proof is omitted).

Lemma 4.2. Assume that the best arm was not elim-
inated prior to round r. Then for any arm i ∈ Sr,

Pr[p̂r1 < p̂ri ] ≤ exp(− 1
2 tr∆2

i ).

We next bound the probability that the algorithm errs
and excludes the best arm on round r.

Lemma 4.3. The probability that the best arm is elim-
inated on round r is at most

3 exp

(
− T

8 log2 n
·

∆2
ir

ir

)
where ir = n/2r+2.

Proof. Define S′r as the set of arms in Sr, excluding the
1
4 |Sr| = n/2r+2 arms with the largest mean. If the best
arm is eliminated in round r, it must be the case that
at least half the arms of Sr (i.e., 1

2 |Sr| = n/2r+1 arms)
have their empirical average larger than its empirical
average. In particular, the empirical means of at least
1
3 |S
′
r| = n/2r+2 of the arms in S′r must be larger than

that of the best arm at the end of round r. Letting
Nr denote the number of arms in S′r whose empirical
average is larger than that of the optimal arm, we have
by Lemma 4.2:

E[Nr] =
∑
i∈S′

r

Pr[p̂r1 < p̂ri ] ≤
∑
i∈S′

r

exp(− 1
2 tr∆2

i )

≤
∑
i∈S′

r

exp

(
− 1

2∆2
i ·

T

|Sr| log2 n

)

≤ |S′r|max
i∈S′

r

exp

(
− 1

2∆2
i ·

2r T

n log2 n

)
≤ |S′r| exp

(
− T

8 log2 n
·

∆2
ir

ir

)

Where the last inequality follows from the fact that
there are at least ir − 1 arms that are not in S′r with
average reward greater than that of any arm in S′r. We
now apply Markov’s inequality to obtain

Pr[Nr >
1
3 |S
′
r|] ≤ 3E[Nr]/|S′r|

≤ 3 exp

(
− T

8 log2 n
·

∆2
ir

ir

)
,

and the lemma follows.

The proof of Theorem 4.1 is now immediate.

Proof. Clearly, the algorithm does not exceed the bud-
get of T arm pulls. Also, if the best arm survives
the execution, then the algorithm succeeds as all other
arms must be eliminated after log2 n rounds. Finally,
by Lemma 4.3 and a union bound, the best arm is
eliminated in one of the log2 n rounds of the algorithm
with probability at most

3

log2 n∑
r=1

exp

(
− T

8 log2 n
·

∆2
ir

ir

)
≤ 3 log2 n · exp

(
− T

8 log2 n
· 1

maxi i∆
−2
i

)
≤ 3 log2 n · exp

(
− T

8H2 log2 n

)
,

which gives the theorem.

5. Experiments

In this section we present a few simple experimen-
tal setups to illustrate our theoretical results. We
focus on algorithms with a fixed budget setting, as
those are more practical and easier to work with. Our
baselines include the state-of-the-art Successive Re-
jects, UCB-E and Adaptive UCB-E (AUCB-E) al-
gorithms of Audibert et al. (2010). It is noted that the
UCB-E algorithm requires the knowledge of a param-
eter depending on the underlying rewards in advance;
its adaptive (heuristic) counterpart AUCB-E calcu-
lates this parameter on-the-fly.

We considered six different setups, where in each the
reward distributions are Bernoulli and the best arm
has expected reward equal to 0.5. Each setup extends
to any number of arms; we ran the experiments with
n = 20, 40, 80 arms in order to examine how the
performance of each algorithm scales as the number
of arms grow. The exact setups we examined are as
follows:

1. One group of suboptimal arms: pi = 0.45 for
i ≥ 2.
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Figure 1. The error probability of the different algorithms in six different setups, averaged over 3000 independent execu-
tions (results in standard deviations of less than 1%). For each setup, we repeated the experiments with 20, 40 and 80
arms (left, middle, and right sub-columns respectively).
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2. Two groups of suboptimal arms: pi = 0.5 −
1
2n for i = 2, . . . , d

√
ne+1 and pi = 0.45 otherwise.

3. Three groups of suboptimal arms: pi = 0.5−
1
5n for i = 2, . . . , 6, pi = 0.49 for i = 7, . . . , 6 +
2 d
√
ne and pi = 0.35 otherwise.

4. Arithmetic: The suboptimality of the arms form
an arithmetic series where p2 = 0.5− 1

5n and pn =
0.25.

5. Geometric: The suboptimality of the arms form
a geometric series where p2 = 0.5 − 1

5n and pn =
0.25.

6. One real competitor: p2 = 0.5− 1
10n and pi =

0.4 otherwise.

For each setup we consider eleven executions:

• Execution 1: Sequential Halving algorithm
• Execution 2: Successive Reject algorithm
• Executions 3-6: UCB-E algorithm with parame-

ters 1, 2, 4, and 8, respectively
• Executions 7-11: AUCB-E algorithm with pa-

rameters 0.25, 0.5, 1, 2, and 4, respectively

Figure 1 presents the error probability of the different
algorithms in each setup, for n = 20, 40 arms and
n = 80 arms respectively. Following Audibert et al.
(2010), each algorithm was given a total budget of H
arm pulls which corresponds to the complexity of the
underlying problem. The exact budget in each of the
setups is given in Table 2.

Setup 20 arms 40 arms 80 arms

1 7600 15600 31600
2 13599 57599 258400
3 150177 340888 982488
4 14005 57430 232579
5 33220 214888 1436445
6 41799 163799 647800

Table 2. The value of H in each setup we experimented.

The experiments demonstrate a few interesting in-
sights. In all cases, it is clear that as the number of
arms grow, the algorithms perform more poorly when
given the respective budget of H pulls. This suggests
that the budget required for the algorithms to achieve
a fixed confidence is indeed asymptotically (strictly)
larger than H. The most rapid decrease in the per-
formance as the number of arms increases occurs in
UCB-E and AUCB-E. This may be explained by the
fact that the theoretical bounds of these algorithms ex-
hibit an additional logarithmic factor in the budget T
(as opposed to the number of arms n as in the case of
Sequential Halving and Successive Reject).

Notice that while UCB-E performs best in some set-

tings, yet is not a practical algorithm as it requires
knowledge of H. Its practical counterpart AUCB-E
does not perform as well as our algorithm nor Suc-
cessive Reject. The opposite occurred in the ex-
periments of (Audibert et al., 2010), most likely due
to the difference in scale. Our Sequential Halving
algorithm has similar performance to that of Succes-
sive Reject, yet presents better performance overall
and scales better with the number of arms.

6. Summary and Discussion

We have considered the best-arm identification prob-
lem in Multi-Armed Bandits, in two settings of recent
interest: fixed confidence and fixed budget. We have
investigated the tightness of the upper bounds over
the number of arm pulls needed to reach a target confi-
dence, in each of these settings. Our main contribution
is in proposing two new algorithms, Exponential-
Gap Elimination that is optimal up to a doubly-
logarithmic factor in the problem parameters (namely,
∆2, . . . ,∆n and n), and Sequential Halving, that
under a wide family of settings is optimal up to a
doubly-logarithmic factors. By that, we improve upon
previous works that are tight only to within logarith-
mic factors.

In addition, we report experimental results that sup-
port our theoretical findings and suggest that the log-
arithmic factors arising in the upper bounds of algo-
rithms for the problem are evident in practice and are
not just artifacts of the analyses. In particular, we
demonstrate the disadvantage of a logarithmic factor
in the budget. Indeed, the theoretical improvement in
the analysis of our Sequential Halving algorithm
is visible in the experiments we have conducted.

In the fixed confidence setting, we have closed the gap
between the upper and lower bounds up to a doubly-
logarithmic factor in the parameters ∆i. We do not
believe that this gap can be removed algorithmically;
in fact, even in a very simple MAB problem with
merely two arms, it is not clear how this can be ac-
complished without prior knowledge of the underlying
parameters. In the fixed budget setting our analysis
relies on the surrogate H2 of the problem complexity,
and thus our upper bound does not relate directly to
the lower bound Ω(H log(1/δ)). However, it is impor-
tant to note that any algorithm whose upper bound is
expressed as a function of H2 cannot perform better
than O(H2 log n log(1/δ)), and probably a quite differ-
ent approach is needed in order to lower the gap any
further.
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