CS 371: Introduction to Artificial Intelligence

Game-Tree Search

Gettysburg
Computer Science

Game-Playing

- Introduction
- Minimax
- Alpha-beta pruning
- Expectiminimax

Games as Search Problems

- Previously, we've looked at search problems with static environments. (One agent affects the environment.)
- Now, we generalize just a bit and allow two agents to affect the environment in turn. \rightarrow dynamic environment
- Previously, we've looked for a sequence of actions to a goal state.
- Now, we're looking for a sequence of actions which maximizes some utility measure regardless of how an adversarial agent acts.

Example of Tree Search

- Search: Peg solitaire
- jump a peg over another to empty space, removing jumped peg
- Initial state: only one space empty
- Goal state: only one space occupied
- Find sequence of jumps from initial state to goal

Example of Game-Tree Search

- Search: Tic-Tac-Toe
- players place X and O in turn.
- Initial state: empty 3×3 grid
- Goal state: three of a player's symbol in a row
- Count win $=+1$, draw $=0$, loss $=-1$
- Find sequence of move which maximizes utility regardless of adversarial play

Example of Game-Tree Search

- Suppose you construct the complete tree of possible plays.
- Evaluate terminal states as (+1,0,-1)
- Evaluate non-terminal states as maximum/minimum of children evaluations for player X/O respectively.
- This propagation of evaluations is called minimax.
- Consider minimax on a subtree of possible tic-tactoe plays...

Gettysburg
Computer Science

Gettysburg
Computer Science

Gettysburg
Computer Science

Gettysburg
Computer Science

Another Minimax Example

Minimax Decision-Making

```
function MINIMAX-DECISION(game) returns an operator
    for each op in OPERATORS[game] do
        VALUE[op]}\leftarrow\mathrm{ MINIMAX-VALUE(APPLY(op,game),game)
    end
    return the op with the highest VALUE[op]
```

function MINIMAX-VALUE(state, game) returns a utility value
if Terminal-Test[game](state) then
return UTILITY[game](state)
else if MAX is to move in state then
return the highest Minimax-VALUE of SUCCESSORS(state)
else
return the lowest Minimax-VaLUE of SUCCESSORS(state)

Perfect Decisions in TwoPlayer Games

- Problem definition: initial state, operators, terminal test, utility (or payoff) function
- Given whole game tree, minimax yields perfect decisions*
- Minimax: minimum of the maximum of the minimum of the maximum of the...
*assuming adversary acts according to minimax \rightarrow importance of player modeling
- Can't search whole game tree, so...

Imperfect Decisions in TwoPlayer Games

- Evaluate states passing cutoff-test according to heuristic evaluation function
- Consider Chess
- enormous state space
- can't possibly search whole tree with current computational limitations
- Must
- limit depth of search
- evaluate non-terminal nodes at limit
- How would you evaluate these

(a) White to move Fairly even positions?
- Material advantage isn't the whole story.

(b) Black to move White slightly better

(d) Black to move White about to lose
© Todd Neller.
A.I.M.A. text figures © Prentice Hall.

Used by permission.

Heuristic Game-Play

- A good evaluation function
- returns actual value at terminal states,
- approximates actual value at non-terminal nodes, and
- isn't too computationally intensive
- Most attribute recent game-playing success to better speed ("brute force") rather than better evaluation (knowledge base)
- Still, most minimax search is pointless...

Pruning Example

Pruning Guarantees

- While we search the tree, we can keep track of guaranteed maximum/minimum utilities if play proceeds to each node.
- When we see a contradiction in guarantees, we can prune remaining children from further

Player consideration, because we've proven a rational player will
 never reach that node.

Assuming Rationality? Ha!

- What if other player isn't rational?
- If evaluation is perfect, then one can always do as well if not better against an irrational player with rational play.

Alpha-Beta Pruning

- Let α, β be local lower, upper bound guarantees
- "If play proceeds here, root will score at least α."
- "If play proceeds here, root will score at most β."
- Pruning thus according to α and β is called alphabeta pruning.
- Minimax search with alpha-beta pruning is sometimes called alpha-beta search.

Alpha-Beta Pruning Algorithm

```
function MAX-VALUE(state, game, }\alpha,\beta)\mathrm{ returns the minimax value of state
    inputs: state, current state in game
        game, game description
        \alpha, the best score for MAX along the path to state
        \beta, the best score for MIN along the path to state
    if CUTOFF-TEST(state) then return EVAL(state)
    for each s in SUCCESSORS(state) do
        \alpha\leftarrow\operatorname{MAX}(\alpha,\operatorname{MIN-VALUE}(s,game, }\alpha,\beta)
        if }\alpha\geq\beta\mathrm{ then return }
    end
    return \alpha
```

function $\operatorname{MIN}-\operatorname{VALUE}($ state, game, $\alpha, \beta)$ returns the minimax value of state

```
if Cutoff-TEST(state) then return EVAL(state)
for each \(s\) in SUCCESSORS(state) do
    \(\beta \leftarrow \operatorname{MiN}(\beta, \operatorname{MAX}-\operatorname{VALUE}(s\), game, \(\alpha, \beta))\)
    if \(\beta \leq \alpha\) then return \(\alpha\)
    end
    return \(\beta\)
```


Alpha-Beta Pruning Exercise

Alpha-Beta Pruning Exercise (cont.)

Games of Chance

Minimax doesn't help here because dice are random and impartial.

Gettysburg
Computer Science

Chance Nodes

Gettysburg
Computer Science
© Todd Neller.
A.I.M.A. text figures © Prentice Hall. Used by permission.

Expectiminimax

- A chance node is evaluated as follows
- the value of each child is multiplied times the probability of reaching that child
- these products are then summed.
- Disadvantages to this approach:
- branching factor of chance nodes can be large!
- no pruning allowed
- evaluation functions are hard!...

Expectiminimax Evaluations

MAX

DICE

MIN

Note that the relative ordering of the leaf values are the same, but the decision has changed! \rightarrow must approximate positive linear transformation of likelihood of winning

Why Minimax Isn't Always Appropriate

MAX

MIN

What if these numbers are roughly approximate and evaluation occasionally has significant error?

Gettysburg
Computer Science

