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Robotics

• Robot – physical agent that performs tasks by sensing and 
manipulating the physical world
– Sensors – input sensor data from environment for state 

estimation
– Effectors – output control actions for actuating effectors to 

change state and/or environment
– Maximizing expected utility – generate and execute control 

outputs that affect change so as to maximize rewards

• Environment complexity: partially observable, stochastic, 
people acting in environment (prediction needed), 
continuous state and action spaces, sometimes high-
dimensional, real-time 

• Outside of computation, most aspects of robotics struggle 
with the challenges of uncertainty.  



Localization

• “Where am I?” “What’s the situation?”

• Given:
– Initial pose (state)

– Environment map

– Sensor/measurement model

– Motion model

• Keep track of the most likely current state as 
the robot moves and senses in the 
environment.



Monte Carlo Localization

• Monte Carlo Localization

– Initial set of random hypotheses about possible 
poses (i.e. states, particles)

– As the robot moves and senses, a Darwinian 
survival-of-the-fittest process tends to reproduce  
the most likely hypotheses and tends to kill off the 
least likely.

– Evolution of a cloud of hypotheses where the 
center, i.e. average, is the most likely robot pose. 



MCL Algorithm
NOTE: These 
two m variables 
refer to the 
environment 
map, and not to 
the for-loop 
control variable 
that serves as an 
index to the 
poses/weights.



Motion Model

• ut – motion control
command at time t - 1 
to affect time t

• xt-1 – pose at time t - 1

• xt – pose at time t

• Model p(xt | ut , xt-1) – the probability of the 
pose being xt given prior motion control 
command ut and prior pose xt-1



Example: 2D Robot with Rotation

• Simple resting pose 
(state): (x, y, θ)T

• Control translational
and rotational 
velocities: (v, ω)T

• Error parameters: α1, α2, α3, α4, α5, α6



Motion Model Based 
on Velocity Command
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But what is
?



Common Probability Distributions

is a zero-mean probability distribution with variance b.  Examples:



Computing Prob

prob_X(a, b2) is the probability of a occurring for 
the zero-centered distribution X with variance b2



Simulating Particles with Error 
Sampling



Sampling with Normal and 
Triangular Distributions

See also: https://stackoverflow.com/questions/33220176/triangular-distribution-in-java

Java: return (Math.random() + Math.random() - 1) * SCALE;
where final double SCALE = Math.sqrt(6 * variance);

rand(-b,b) in Java: b * (Math.random() + Math.random() - 1)

https://stackoverflow.com/questions/33220176/triangular-distribution-in-java


In General

•Collect a lot of 
motion data and use 
that data to create 
your motion model.



Measurement Model

• zt – sensor inputs 
at time t

• xt – pose (state) at time t

• m – map of the environment

• p(zt | xt , m) – probability of
measuring zt given pose xt

and map m



Distributions for Modeling Different 
Kinds of Error Expectations

Expected 
variation
around true 
object
range value

Unexpected 
closer
objects

Object 
missed by
range finder 
and
max range 
returned

General 
unexplained
sensor noise



Added together…



… To Make a Weighted Average …



… But How Should We Set the 
Weights? 



Maximum Likelihood Estimation

• Iteratively tune parameters
until the data distribution
collected for known 
distance measurements 
achieves maximum
likelihood.

• (Or manually tune for
good match to data.)



Compute the
relative likelihood
of each measurement
interpretation for
each measurement.

Think of these as normalized
weights for the interpretation
of each measurement.

Set the new weights for the 
weighted sum according to 
their average relative likelihood

Also compute the most likely
parameters for our distributions.



In General

•Collect a lot of 
measurement data and 
use that data to create 
your measurement 
model.



Project Goal: Monte Carlo Localization 
for the Kidnapped Robot Problem

• Goals: 
– Acquire a map of the environment, e.g. FASTSLAM or 

other appropriate techniques.

– Implement Monte Carlo localization.

– Solve the Kidnapped Robot Problem:
• An autonomous robot is transported to an unknown state 

and must localize.

– Optional:
• Designate a robot home state.

• Have the robot return home after being kidnapped and 
successfully localizing.



Project Tips

• Set simple goals. Follow the KISS Principle. (You can always set more 
ambitious goals if you achieve these early.)  Example:
– 1D state space:

• Have a fixed robot that can rotate range finder(s), a camera, or other localizing 
sensor to determine state θ.   

• When you start the system, let initial state θ0 be the “home state”.
• Have the system rotate and sense to build a mapping from sensor inputs to 

probable locations.
• After it has terminated mapping,  put it in a new mode seeking to return home 

when it does not appear to be home.
• “Kidnap” it by rotating the robot and demonstrate that it can relocalize and 

return home.

• Divide labor: project lead, documentation, version control, sensor 
model, motor model, etc.

• Plan team meeting times in advance.  Budget for 18 total hours for 
each over 2 weeks beyond class.  Log hours.

https://en.wikipedia.org/wiki/KISS_principle


Project Platform: Anki Cozmo

• Programming tools:
– Cozmo SDK: https://www.anki.com/en-

us/cozmo/SDK
– cozmo-tools: 

https://github.com/touretzkyds/cozmo-
tools

• Possible projects:
1. Create a new project where the robot is 

restricted to rotational movement only 
and uses visual camera sensing to 
localize.

2. Find and build upon prior Cozmo 2D 
localization and mapping work you 
might find.

https://www.anki.com/en-us/cozmo
https://www.anki.com/en-us/cozmo/SDK
https://github.com/touretzkyds/cozmo-tools
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