
Robotics: From Basic Terminology to
Monte Carlo Localization

Todd W. Neller

Figures © S. Russell, P. Norvig. Artificial Intelligence: A Modern Approach
or S. Thrun, W. Burgard, D. Fox. Probabilistic Robotics except where otherwise noted.

Robotics

• Robot – physical agent that performs tasks by sensing and
manipulating the physical world
– Sensors – input sensor data from environment for state

estimation
– Effectors – output control actions for actuating effectors to

change state and/or environment
– Maximizing expected utility – generate and execute control

outputs that affect change so as to maximize rewards

• Environment complexity: partially observable, stochastic,
people acting in environment (prediction needed),
continuous state and action spaces, sometimes high-
dimensional, real-time

• Outside of computation, most aspects of robotics struggle
with the challenges of uncertainty.

Localization

• “Where am I?” “What’s the situation?”

• Given:
– Initial pose (state)

– Environment map

– Sensor/measurement model

– Motion model

• Keep track of the most likely current state as
the robot moves and senses in the
environment.

Monte Carlo Localization

• Monte Carlo Localization

– Initial set of random hypotheses about possible
poses (i.e. states, particles)

– As the robot moves and senses, a Darwinian
survival-of-the-fittest process tends to reproduce
the most likely hypotheses and tends to kill off the
least likely.

– Evolution of a cloud of hypotheses where the
center, i.e. average, is the most likely robot pose.

MCL Algorithm
NOTE: These
two m variables
refer to the
environment
map, and not to
the for-loop
control variable
that serves as an
index to the
poses/weights.

Motion Model

• ut – motion control
command at time t - 1
to affect time t

• xt-1 – pose at time t - 1

• xt – pose at time t

• Model p(xt | ut , xt-1) – the probability of the
pose being xt given prior motion control
command ut and prior pose xt-1

Example: 2D Robot with Rotation

• Simple resting pose
(state): (x, y, θ)T

• Control translational
and rotational
velocities: (v, ω)T

• Error parameters: α1, α2, α3, α4, α5, α6

Motion Model Based
on Velocity Command

xt-1 =(x, y, θ)T

xt =(x’, y’, θ’)T

Motion Model Based
on Velocity Command

xt-1 =(x, y, θ)T

xt =(x’, y’, θ’)T

Turning radius
circle position
and radius

Motion Model Based
on Velocity Command

xt-1 =(x, y, θ)T

xt =(x’, y’, θ’)T

Turning radius
circle position
and radius

Change of
heading

Motion Model Based
on Velocity Command

xt-1 =(x, y, θ)T

xt =(x’, y’, θ’)T

Turning radius
circle position
and radius

Change of
heading

Translational
and rotational
velocity,
final rotation
(error)

Motion Model Based
on Velocity Command

xt-1 =(x, y, θ)T

xt =(x’, y’, θ’)T

Turning radius
circle position
and radius

Change of
heading

Translational
and rotational
velocity,
final rotation
(error)

Probabilities of discrepencies between
commanded and computed velocities &
rotation, given error parameters times
velocity magnitudes

Motion Model Based
on Velocity Command

xt-1 =(x, y, θ)T

xt =(x’, y’, θ’)T

Turning radius
circle position
and radius

Change of
heading

Translational
and rotational
velocity,
final rotation
(error)

Probabilities of discrepencies between
commanded and computed velocities &
rotation, given error parameters times
velocity magnitudes

But what is
?

Common Probability Distributions

is a zero-mean probability distribution with variance b. Examples:

Computing Prob

prob_X(a, b2) is the probability of a occurring for
the zero-centered distribution X with variance b2

Simulating Particles with Error
Sampling

Sampling with Normal and
Triangular Distributions

See also: https://stackoverflow.com/questions/33220176/triangular-distribution-in-java

Java: return (Math.random() + Math.random() - 1) * SCALE;
where final double SCALE = Math.sqrt(6 * variance);

rand(-b,b) in Java: b * (Math.random() + Math.random() - 1)

https://stackoverflow.com/questions/33220176/triangular-distribution-in-java

In General

•Collect a lot of
motion data and use
that data to create
your motion model.

Measurement Model

• zt – sensor inputs
at time t

• xt – pose (state) at time t

• m – map of the environment

• p(zt | xt , m) – probability of
measuring zt given pose xt

and map m

Distributions for Modeling Different
Kinds of Error Expectations

Expected
variation
around true
object
range value

Unexpected
closer
objects

Object
missed by
range finder
and
max range
returned

General
unexplained
sensor noise

Added together…

… To Make a Weighted Average …

… But How Should We Set the
Weights?

Maximum Likelihood Estimation

• Iteratively tune parameters
until the data distribution
collected for known
distance measurements
achieves maximum
likelihood.

• (Or manually tune for
good match to data.)

Compute the
relative likelihood
of each measurement
interpretation for
each measurement.

Think of these as normalized
weights for the interpretation
of each measurement.

Set the new weights for the
weighted sum according to
their average relative likelihood

Also compute the most likely
parameters for our distributions.

In General

•Collect a lot of
measurement data and
use that data to create
your measurement
model.

Project Goal: Monte Carlo Localization
for the Kidnapped Robot Problem

• Goals:
– Acquire a map of the environment, e.g. FASTSLAM or

other appropriate techniques.

– Implement Monte Carlo localization.

– Solve the Kidnapped Robot Problem:
• An autonomous robot is transported to an unknown state

and must localize.

– Optional:
• Designate a robot home state.

• Have the robot return home after being kidnapped and
successfully localizing.

Project Tips

• Set simple goals. Follow the KISS Principle. (You can always set more
ambitious goals if you achieve these early.) Example:
– 1D state space:

• Have a fixed robot that can rotate range finder(s), a camera, or other localizing
sensor to determine state θ.

• When you start the system, let initial state θ0 be the “home state”.
• Have the system rotate and sense to build a mapping from sensor inputs to

probable locations.
• After it has terminated mapping, put it in a new mode seeking to return home

when it does not appear to be home.
• “Kidnap” it by rotating the robot and demonstrate that it can relocalize and

return home.

• Divide labor: project lead, documentation, version control, sensor
model, motor model, etc.

• Plan team meeting times in advance. Budget for 18 total hours for
each over 2 weeks beyond class. Log hours.

https://en.wikipedia.org/wiki/KISS_principle

Project Platform: Anki Cozmo

• Programming tools:
– Cozmo SDK: https://www.anki.com/en-

us/cozmo/SDK
– cozmo-tools:

https://github.com/touretzkyds/cozmo-
tools

• Possible projects:
1. Create a new project where the robot is

restricted to rotational movement only
and uses visual camera sensing to
localize.

2. Find and build upon prior Cozmo 2D
localization and mapping work you
might find.

https://www.anki.com/en-us/cozmo
https://www.anki.com/en-us/cozmo/SDK
https://github.com/touretzkyds/cozmo-tools
https://pisces.bbystatic.com/image2/BestBuy_US/images/products/6006/6006503_ra.jpg;maxHeight=640;maxWidth=550

