Robotics: From Basic Terminology to Monte Carlo Localization

Todd W. Neller

Figures © S. Russell, P. Norvig. Artificial Intelligence: A Modern Approach or S. Thrun, W. Burgard, D. Fox. Probabilistic Robotics except where otherwise noted.

Robotics

- Robot - physical agent that performs tasks by sensing and manipulating the physical world
- Sensors - input sensor data from environment for state estimation
- Effectors - output control actions for actuating effectors to change state and/or environment
- Maximizing expected utility - generate and execute control outputs that affect change so as to maximize rewards
- Environment complexity: partially observable, stochastic, people acting in environment (prediction needed), continuous state and action spaces, sometimes highdimensional, real-time
- Outside of computation, most aspects of robotics struggle with the challenges of uncertainty.

Localization

- "Where am I?" "What's the situation?"
- Given:
- Initial pose (state)
- Environment map
- Sensor/measurement model
- Motion model
- Keep track of the most likely current state as the robot moves and senses in the environment.

Monte Carlo Localization

- Monte Carlo Localization
- Initial set of random hypotheses about possible poses (i.e. states, particles)
- As the robot moves and senses, a Darwinian survival-of-the-fittest process tends to reproduce the most likely hypotheses and tends to kill off the least likely.
- Evolution of a cloud of hypotheses where the center, i.e. average, is the most likely robot pose.

MCL Algorithm

Algorithm MCL($\left.\mathcal{X}_{t-1}, u_{t}, z_{t}, m\right)$:
$\overline{\mathcal{X}}_{t}=\mathcal{X}_{t}=\emptyset$
for $m=1$ to M do
$x_{t}^{[m]}=\operatorname{sample}$ motion_model $\left(u_{t}, x_{t-1}^{[m]}\right)$
$w_{t}^{[m]}=$ measurement_model $\left(z_{t}, x_{t}^{[m]}, m\right)$
$\overline{\mathcal{X}}_{t}=\overline{\mathcal{X}}_{t}+\left\langle x_{t}^{[m]}, w_{t}^{[m]}\right\rangle$
endfor
for $m=1$ to M do
draw i with probability $\propto w_{t}^{[i]}$ add $x_{t}^{[i]}$ to \mathcal{X}_{t}
endfor
return \mathcal{X}_{t}

NOTE: These two m variables refer to the environment map, and not to the for-loop control variable that serves as an index to the poses/weights.

Figure 1: Pseudocode for MCL (Thrun, Burgard, and Fox 2005)

Motion Model

- u_{t} - motion control command at time $t-1$

$$
p\left(x_{t} \mid u_{t}, x_{t-1}\right)
$$ to affect time t

- x_{t-1} - pose at time $t-1$
- x_{t} - pose at time t
- Model $\mathrm{p}\left(x_{t} \mid u_{t}, x_{t-1}\right)$ - the probability of the pose being x_{t} given prior motion control command u_{t} and prior pose x_{t-1}

Example: 2D Robot with Rotation

- Simple resting pose (state): $(x, y, \theta)^{\top}$
- Control translational and rotational velocities: $(v, \omega)^{\top}$

Figure 5.1 Robot pose, shown in a global coordinate system.

- Error parameters: $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}$

Motion Model Based on Velocity Command

$x_{t-1}=(x, y, \theta)^{\top}$
$x_{t}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)^{\top}$

$$
\begin{array}{ll}
\text { 1: } & \text { Algorithm motion_model_velocity }\left(x_{t}, u_{t}, x_{t-1}\right): \\
\text { 2: } & \mu=\frac{1}{2} \frac{\left(x-x^{\prime}\right) \cos \theta+\left(y-y^{\prime}\right) \sin \theta}{\left(y-y^{\prime}\right) \cos \theta-\left(x-x^{\prime}\right) \sin \theta} \\
\text { 3: } & x^{*}=\frac{x+x^{\prime}}{2}+\mu\left(y-y^{\prime}\right) \\
4: & y^{*}=\frac{y+y^{\prime}}{2}+\mu\left(x^{\prime}-x\right) \\
\text { 5: } & r^{*}=\sqrt{\left(x-x^{*}\right)^{2}+\left(y-y^{*}\right)^{2}} \\
\text { 6: } & \Delta \theta=\operatorname{atan} 2\left(y^{\prime}-y^{*}, x^{\prime}-x^{*}\right)-\operatorname{atan} 2\left(y-y^{*}, x-x^{*}\right) \\
7: & \hat{v}=\frac{\Delta \theta}{\Delta t} r^{*} \\
8: & \hat{\omega}=\frac{\Delta \theta}{\Delta t} \\
9: & \hat{\gamma}=\frac{\theta^{\prime}-\theta}{\Delta t}-\hat{\omega} \\
10: & \text { return } \operatorname{prob}\left(v-\hat{v}, \alpha_{1} v^{2}+\alpha_{2} \omega^{2}\right) \cdot \operatorname{prob}\left(\omega-\hat{\omega}, \alpha_{3} v^{2}+\alpha_{4} \omega^{2}\right) \\
& \quad \operatorname{prob}\left(\hat{\gamma}, \alpha_{5} v^{2}+\alpha_{6} \omega^{2}\right)
\end{array}
$$

Table 5.1 Algorithm for computing $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$ based on velocity information. Here we assume x_{t-1} is represented by the vector $\left(\begin{array}{lll}x & y & \theta\end{array}\right)^{T} ; x_{t}$ is represented by $\left(\begin{array}{lll}x^{\prime} & y^{\prime} & \theta^{\prime}\end{array}\right)^{T}$; and u_{t} is represented by the velocity vector $(v \quad \omega)^{T}$. The function $\operatorname{prob}\left(a, b^{2}\right)$ computes the probability of its argument a under a zero-centered distribution with variance b^{2}. It may be implemented using any of the algorithms in Table 5.2.

Motion Model Based on Velocity Command

$x_{t-1}=(x, y, \theta)^{\top}$
$x_{t}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)^{\top}$

Turning radius circle position and radius

Algorithm motion_model_velocity $\left(x_{t}, u_{t}, x_{t-1}\right)$:
$\mu=\frac{1}{2} \frac{\left(x-x^{\prime}\right) \cos \theta+\left(y-y^{\prime}\right) \sin \theta}{\left(y-y^{\prime}\right) \cos \theta-\left(x-x^{\prime}\right) \sin \theta}$
$x^{*}=\frac{x+x^{\prime}}{2}+\mu\left(y-y^{\prime}\right)$
$y^{*}=\frac{y+y^{\prime}}{2}+\mu\left(x^{\prime}-x\right)$
$r^{*}=\sqrt{\left(x-x^{*}\right)^{2}+\left(y-y^{*}\right)^{2}}$
$\Delta \theta=\operatorname{atan} 2\left(y^{\prime}-y^{*}, x^{\prime}-x^{*}\right)-\operatorname{atan} 2\left(y-y^{*}, x-x^{*}\right)$
$\hat{v}=\frac{\Delta \theta}{\Delta t} r^{*}$
$\hat{\omega}=\frac{\Delta \theta}{\Delta t}$
$\hat{\gamma}=\frac{\theta^{\prime}-\theta}{\Delta t}-\hat{\omega}$
return $\operatorname{prob}\left(v-\hat{v}, \alpha_{1} v^{2}+\alpha_{2} \omega^{2}\right) \cdot \operatorname{prob}\left(\omega-\hat{\omega}, \alpha_{3} v^{2}+\alpha_{4} \omega^{2}\right)$ $\cdot \operatorname{prob}\left(\hat{\gamma}, \alpha_{5} v^{2}+\alpha_{6} \omega^{2}\right)$

Table 5.1 Algorithm for computing $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$ based on velocity information. Here we assume x_{t-1} is represented by the vector $\left(\begin{array}{lll}x & y & \theta\end{array}\right)^{T} ; x_{t}$ is represented by $\left(\begin{array}{lll}x^{\prime} & y^{\prime} & \theta^{\prime}\end{array}\right)^{T}$; and u_{t} is represented by the velocity vector $(v \quad \omega)^{T}$. The function $\operatorname{prob}\left(a, b^{2}\right)$ computes the probability of its argument a under a zero-centered distribution with variance b^{2}. It may be implemented using any of the algorithms in Table 5.2.

Motion Model Based on Velocity Command

$x_{t-1}=(x, y, \theta)^{\top}$
$x_{t}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)^{\top}$

Table 5.1 Algorithm for computing $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$ based on velocity information. Here we assume x_{t-1} is represented by the vector $\left(\begin{array}{lll}x & y & \theta\end{array}\right)^{T} ; x_{t}$ is represented by $\left(\begin{array}{lll}x^{\prime} & y^{\prime} & \theta^{\prime}\end{array}\right)^{T}$; and u_{t} is represented by the velocity vector $(v \quad \omega)^{T}$. The function $\operatorname{prob}\left(a, b^{2}\right)$ computes the probability of its argument a under a zero-centered distribution with variance b^{2}. It may be implemented using any of the algorithms in Table 5.2.

Motion Model Based on Velocity Command

$x_{t-1}=(x, y, \theta)^{\top}$
$x_{t}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)^{\top}$

Table 5.1 Algorithm for computing $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$ based on velocity information. Here we assume x_{t-1} is represented by the vector $\left(\begin{array}{lll}x & y & \theta\end{array}\right)^{T} ; x_{t}$ is represented by $\left(\begin{array}{lll}x^{\prime} & y^{\prime} & \theta^{\prime}\end{array}\right)^{T}$; and u_{t} is represented by the velocity vector $(v \quad \omega)^{T}$. The function prob $\left(a, b^{2}\right)$ computes the probability of its argument a under a zero-centered distribution with variance b^{2}. It may be implemented using any of the algorithms in Table 5.2.

Motion Model Based on Velocity Command

$x_{t-1}=(x, y, \theta)^{\top}$
$x_{t}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)^{\top}$

Table 5.1 Algorithm for computing $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$ based on velocity information. Here we assume x_{t-1} is represented by the vector $\left(\begin{array}{lll}x & y & \theta\end{array}\right)^{T} ; x_{t}$ is represented by $\left(\begin{array}{lll}x^{\prime} & y^{\prime} & \theta^{\prime}\end{array}\right)^{T}$; and u_{t} is represented by the velocity vector $(v \quad \omega)^{T}$. The function $\operatorname{prob}\left(a, b^{2}\right)$ computes the probability of its argument a under a zero-centered distribution with variance b^{2}. It may be implemented using any of the algorithms in Table 5.2.

Motion Model Based on Velocity Command

$$
\begin{aligned}
& x_{t-1}=(x, y, \theta)^{\top} \\
& x_{t}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)^{\top}
\end{aligned}
$$

Table 5.1 Algorithm for computing $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$ based on velocity information. Here we assume x_{t-1} is represented by the vector $\left(\begin{array}{lll}x & y & \theta\end{array}\right)^{T} ; x_{t}$ is represented by $\left(\begin{array}{lll}x^{\prime} & y^{\prime} & \theta^{\prime}\end{array}\right)^{T}$; and u_{t} is represented by the velocity vector $(v \quad \omega)^{T}$. The function $\operatorname{prob}\left(a, b^{2}\right)$ computes the probability of its argument a under a zero-centered distribution with variance b^{2}. It may be implemented using any of the algorithms in Table 5.2.

Common Probability Distributions

prob is a zero-mean probability distribution with variance b. Examples:

Figure 5.6 Probability density functions with variance b : (a) Normal distribution, (b) triangular distribution.

Computing Prob

1: Algorithm prob_normal_distribution $\left(a, b^{2}\right)$:
2: \quad return $\frac{1}{\sqrt{2 \pi b^{2}}} \exp \left\{-\frac{1}{2} \frac{a^{2}}{b^{2}}\right\}$

3: \quad Algorithm prob_triangular_distribution $\left(a, b^{2}\right)$:
4: \quad return $\max \left\{0, \frac{1}{\sqrt{6} b}-\frac{|a|}{6 b^{2}}\right\}$

Table 5.2 Algorithms for computing densities of a zero-centered normal distribution and a triangular distribution with variance b^{2}.
prob_X($\left.a, b^{2}\right)$ is the probability of a occurring for the zero-centered distribution X with variance b^{2}

Simulating Particles with Error Sampling

1:	Algorithm sample_motion_model_velocity $\left(u_{t}, x_{t-1}\right):$
$2:$	$\hat{v}=v+\operatorname{sample}\left(\alpha_{1} v^{2}+\alpha_{2} \omega^{2}\right)$
$3:$	$\hat{\omega}=\omega+\operatorname{sample}\left(\alpha_{3} v^{2}+\alpha_{4} \omega^{2}\right)$
$4:$	$\hat{\gamma}=\operatorname{sample}\left(\alpha_{5} v^{2}+\alpha_{6} \omega^{2}\right)$
$5:$	$x^{\prime}=x-\frac{\hat{v}}{\hat{\omega}} \sin \theta+\frac{\hat{v}}{\hat{\omega}} \sin (\theta+\hat{\omega} \Delta t)$
$6:$	$y^{\prime}=y+\frac{\hat{v}}{\omega} \cos \theta-\frac{\hat{v}}{\omega} \cos (\theta+\hat{\omega} \Delta t)$
$7:$	$\theta^{\prime}=\theta+\hat{\omega} \Delta t+\hat{\gamma} \Delta t$
$8:$	return $x_{t}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)^{T}$

Table 5.3 Algorithm for sampling poses $x_{t}=\left(\begin{array}{lll}x^{\prime} & y^{\prime} & \theta^{\prime}\end{array}\right)^{T}$ from a pose $x_{t-1}=$ $\left(\begin{array}{ll}x & y\end{array}\right)^{T}$ and a control $u_{t}=(v \omega)^{T}$. Note that we are perturbing the final orientation by an additional random term, $\hat{\gamma}$. The variables α_{1} through α_{6} are the parameters of the motion noise. The function sample $\left(b^{2}\right)$ generates a random sample from a zerocentered distribution with variance b^{2}. It may, for example, be implemented using the algorithms in Table 5.4.

Sampling with Normal and Triangular Distributions

Table 5.4 Algorithm for sampling from (approximate) normal and triangular distributions with zero mean and variance b^{2}; see Winkler (1995: p293). The function $\operatorname{rand}(x, y)$ is assumed to be a pseudo random number generator with uniform distribution in $[x, y]$.

See also: https://stackoverflow.com/questions/33220176/triangular-distribution-in-java

In General

-Collect a lot of motion data and use that data to create your motion model.

Measurement Model

- z_{t}-sensor inputs at time t

$$
p\left(z_{t} \mid x_{t}, m\right)
$$

- x_{t} - pose (state) at time t
- m - map of the environment
- $p\left(z_{t} \mid x_{t}, m\right)$ - probability of measuring z_{t} given pose x_{t} and map m

Distributions for Modeling Different Kinds of Error Expectations

(a) Gaussian distribution $p_{\text {hit }}$

(c) Uniform distribution $p_{\max }$

Object missed by range finder and
max range returned
(b) Exponential distribution $p_{\text {short }}$

(d) Uniform distribution $p_{\text {rand }}$

Unexpected closer objects

General unexplained sensor noise

Figure 6.3 Components of the range finder sensor model. In each diagram the horizontal axis corresponds to the measurement z_{t}^{k}, the vertical to the likelihood.

Added together...

Figure 6.4 "Pseudo-density" of a typical mixture distribution $p\left(z_{t}^{k} \mid x_{t}, m\right)$.

... To Make a Weighted Average

These four different distributions are now mixed by a weighted average, defined by the parameters $z_{\text {hit }}, z_{\text {short }}, z_{\max }$, and $z_{\text {rand }}$ with $z_{\text {hit }}+z_{\text {short }}+z_{\text {max }}+$ $z_{\text {rand }}=1$.

$$
p\left(z_{t}^{k} \mid x_{t}, m\right)=\left(\begin{array}{c}
z_{\text {hit }} \tag{6.12}\\
z_{\text {short }} \\
z_{\max } \\
z_{\text {rand }}
\end{array}\right)^{T} \cdot\left(\begin{array}{c}
p_{\text {hit }}\left(z_{t}^{k} \mid x_{t}, m\right) \\
p_{\text {short }}\left(z_{t}^{k} \mid x_{t}, m\right) \\
p_{\max }\left(z_{t}^{k} \mid x_{t}, m\right) \\
p_{\text {rand }}\left(z_{t}^{k} \mid x_{t}, m\right)
\end{array}\right)
$$

1: Algorithm beam_range_finder_model $\left(z_{t}, x_{t}, m\right):$

2: $\quad q=1$
3: \quad for $k=1$ to K do
4: compute $z_{t}^{k *}$ for the measurement z_{t}^{k} using ray casting
5: $\quad p=z_{\text {hit }} \cdot p_{\text {hit }}\left(z_{t}^{k} \mid x_{t}, m\right)+z_{\text {short }} \cdot p_{\text {short }}\left(z_{t}^{k} \mid x_{t}, m\right)$ $+z_{\text {max }} \cdot p_{\max }\left(z_{t}^{k} \mid x_{t}, m\right)+z_{\text {rand }} \cdot p_{\text {rand }}\left(z_{t}^{k} \mid x_{t}, m\right)$
$q=q \cdot p$
8: \quad return q
Table 6.1 Algorithm for computing the likelihood of a range scan z_{t}, assuming conditional independence between the individual range measurements in the scan.

... But How Should We Set the Weights?

(a) Sonar data

Figure 6.5 Typical data obtained with (a) a sonar sensor and (b) a laser-range sensor in an office environment for a "true" range of 300 cm and a maximum range of 500 cm.

Maximum Likelihood Estimation

- Iteratively tune parameters
until the data distribution
collected for known distance measurements achieves maximum likelihood.
- (Or manually tune for good match to data.)

Algorithm learn_intrinsic_parameters (Z, X, m) :
repeat until convergence criterion satisfied
for all z_{i} in Z do
$\eta=\left[p_{\text {hit }}\left(z_{i} \mid x_{i}, m\right)+p_{\text {short }}\left(z_{i} \mid x_{i}, m\right)\right.$
$\left.+p_{\max }\left(z_{i} \mid x_{i}, m\right)+p_{\text {rand }}\left(z_{i} \mid x_{i}, m\right)\right]^{-1}$
calculate z_{i}^{*}
$e_{i, \text { hit }}=\eta p_{\text {hit }}\left(z_{i} \mid x_{i}, m\right)$
$e_{i, \text { short }}=\eta p_{\text {short }}\left(z_{i} \mid x_{i}, m\right)$
$e_{i, \max }=\eta p_{\max }\left(z_{i} \mid x_{i}, m\right)$
$e_{i, \text { rand }}=\eta p_{\text {rand }}\left(z_{i} \mid x_{i}, m\right)$

$$
z_{\mathrm{hit}}=|Z|^{-1} \sum_{i} e_{i, \mathrm{hit}}
$$

$z_{\text {short }}=|Z|^{-1} \sum_{i} e_{i, \text { short }}$
$z_{\text {max }}=|Z|^{-1} \sum_{i} e_{i, \max }$
$z_{\mathrm{rand}}=|Z|^{-1} \sum_{i} e_{i, \mathrm{rand}}$
$\sigma_{\text {hit }}=\sqrt{\frac{1}{\sum_{i} e_{i, \text { hit }}} \sum_{i} e_{i, \text { hit }}\left(z_{i}-z_{i}^{*}\right)^{2}}$
$\lambda_{\text {short }}=\frac{\sum_{i} e_{i, \text { short }}}{\sum_{i} e_{i, \text { short }} z_{i}}$
return $\Theta=\left\{z_{\text {hit }}, z_{\text {short }}, z_{\text {max }}, z_{\text {rand }}, \sigma_{\text {hit }}, \lambda_{\text {short }}\right\}$

1: Algorithm learn_intrinsic_parameters(Z, X, m):

2: repeat until convergence criterion satisfied

$$
\text { for all } z_{i} \text { in } Z \text { do }
$$

$$
\begin{aligned}
\eta= & {\left[p_{\text {hit }}\left(z_{i} \mid x_{i}, m\right)+p_{\text {short }}\left(z_{i} \mid x_{i}, m\right)\right.} \\
& \left.+p_{\max }\left(z_{i} \mid x_{i}, m\right)+p_{\text {rand }}\left(z_{i} \mid x_{i}, m\right)\right]
\end{aligned}
$$

calculate z_{i}^{*}

$$
e_{i, \text { hit }}=\eta p_{\text {hit }}\left(z_{i} \mid x_{i}, m\right)
$$

$$
e_{i, \text { short }}=\eta p_{\text {short }}\left(z_{i} \mid x_{i}, m\right)
$$

$$
e_{i, \max }=\eta p_{\max }\left(z_{i} \mid x_{i}, m\right)
$$

$$
e_{i, \text { rand }}=\eta p_{\text {rand }}\left(z_{i} \mid x_{i}, m\right)
$$

$$
z_{\text {hit }}=|Z|^{-1} \sum_{i} e_{i, \mathrm{hit}}
$$

$$
z_{\text {short }}=|Z|^{-1} \sum_{i} e_{i, \text { short }}
$$

$$
z_{\max }=|Z|^{-1} \sum_{i} e_{i, \max }
$$

$$
z_{\mathrm{rand}}=|Z|^{-1} \sum_{i} e_{i, \mathrm{rand}}
$$

$$
\sigma_{\mathrm{hit}}=\sqrt{\frac{1}{\sum_{i} e_{i, \mathrm{hit}}} \sum_{i} e_{i, \mathrm{hit}}\left(z_{i}-z_{i}^{*}\right)^{2}}
$$

$$
\lambda_{\text {short }}=\frac{\sum_{i} e_{i, \text { short }}}{\sum_{i} e_{i, \text { short }} z_{i}}
$$

Also compute the most likely parameters for our distributions.
return $\Theta=\left\{z_{\text {hit }}, z_{\text {short }}, z_{\text {max }}, z_{\text {rand }}, \sigma_{\text {hit }}, \lambda_{\text {short }}\right\}$

In General

- Collect a lot of measurement data and use that data to create your measurement model.

Project Goal: Monte Carlo Localization for the Kidnapped Robot Problem

- Goals:
- Acquire a map of the environment, e.g. FASTSLAM or other appropriate techniques.
- Implement Monte Carlo localization.
- Solve the Kidnapped Robot Problem:
- An autonomous robot is transported to an unknown state and must localize.
- Optional:
- Designate a robot home state.
- Have the robot return home after being kidnapped and successfully localizing.

Project Tips

- Set simple goals. Follow the KISS Principle. (You can always set more ambitious goals if you achieve these early.) Example:
- 1D state space:
- Have a fixed robot that can rotate range finder(s), a camera, or other localizing sensor to determine state θ.
- When you start the system, let initial state θ_{0} be the "home state".
- Have the system rotate and sense to build a mapping from sensor inputs to probable locations.
- After it has terminated mapping, put it in a new mode seeking to return home when it does not appear to be home.
- "Kidnap" it by rotating the robot and demonstrate that it can relocalize and return home.
- Divide labor: project lead, documentation, version control, sensor model, motor model, etc.
- Plan team meeting times in advance. Budget for 18 total hours for each over 2 weeks beyond class. Log hours.

Project Platform: Anki Cozmo

- Programming tools:
- Cozmo SDK: https://www.anki.com/enus/cozmo/SDK
- cozmo-tools: https://github.com/touretzkyds/cozmotools
- Possible projects:

1. Create a new project where the robot is restricted to rotational movement only and uses visual camera sensing to localize.
2. Find and build upon prior Cozmo 2D localization and mapping work you might find.
