Robotics: From Basic Terminology to Monte Carlo Localization

Todd W. Neller

Figures © S. Russell, P. Norvig. *Artificial Intelligence: A Modern Approach* or S. Thrun, W. Burgard, D. Fox. *Probabilistic Robotics* except where otherwise noted.

Robotics

- Robot physical agent that performs tasks by sensing and manipulating the physical world
 - Sensors input sensor data from environment for state estimation
 - Effectors output control actions for actuating effectors to change state and/or environment
 - Maximizing expected utility generate and execute control outputs that affect change so as to maximize rewards
- Environment complexity: partially observable, stochastic, people acting in environment (prediction needed), continuous state and action spaces, sometimes highdimensional, real-time
- Outside of computation, most aspects of robotics struggle with the challenges of *uncertainty*.

Localization

- "Where am I?" "What's the situation?"
- Given:
 - Initial pose (state)
 - Environment map
 - Sensor/measurement model
 - Motion model
- Keep track of the most likely current state as the robot moves and senses in the environment.

Monte Carlo Localization

- Monte Carlo Localization
 - Initial set of random hypotheses about possible poses (i.e. states, particles)
 - As the robot moves and senses, a Darwinian survival-of-the-fittest process tends to reproduce the most likely hypotheses and tends to kill off the least likely.
 - Evolution of a cloud of hypotheses where the center, i.e. average, is the most likely robot pose.

MCL Algorithm

Algorithm MCL($\mathcal{X}_{t-1}, u_t, z_t, m$): 1: 2: $\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$ for m = 1 to M do 3: $x_t^{[m]} =$ sample_motion_model $(u_t, x_{t-1}^{[m]})$ 4: $w_t^{[m]} =$ **measurement_model** $(z_t, x_t^{[m]}, m)$ 5: $\bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle$ 6: 7: endfor for m = 1 to M do 8: draw i with probability $\propto w_{\star}^{[i]}$ 9: add $x_t^{[i]}$ to \mathcal{X}_t 10: 11: endfor 12: return \mathcal{X}_t

Figure 1: Pseudocode for MCL (Thrun, Burgard, and Fox 2005)

NOTE: These two *m* variables refer to the environment *m*ap, and not to the for-loop control variable that serves as an index to the poses/weights.

Motion Model

u_t – motion control
 command at time *t* - 1
 to affect time *t*

$$p(x_t \mid u_t, x_{t-1})$$

- *x*_{t-1} pose at time *t* 1
- x_t pose at time t
- Model p(x_t | u_t, x_{t-1}) the probability of the pose being x_t given prior motion control command u_t and prior pose x_{t-1}

Example: 2D Robot with Rotation

- Simple resting pose (state): (x, y, θ)^T
- Control translational and rotational velocities: (v, ω)^T

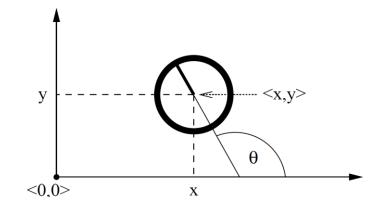


Figure 5.1 Robot pose, shown in a global coordinate system.

• Error parameters: α_1 , α_2 , α_3 , α_4 , α_5 , α_6

Motion Model Based on Velocity Command

Algorithm motion_model_velocity(x_t, u_t, x_{t-1}): 1: $\mu = \frac{1}{2} \frac{(x - x')\cos\theta + (y - y')\sin\theta}{(y - y')\cos\theta - (x - x')\sin\theta}$ 2: $x^* = \frac{x + x'}{2} + \mu(y - y')$ 3: $y^* = \frac{y + y'}{2} + \mu(x' - x)$ 4: $r^* = \sqrt{(x - x^*)^2 + (y - y^*)^2}$ 5: $\Delta \theta = \operatorname{atan2}(y' - y^*, x' - x^*) - \operatorname{atan2}(y - y^*, x - x^*)$ 6: $\hat{v} = \frac{\Delta\theta}{\Delta t} r^*$ 7: $\hat{\omega} = \frac{\overline{\Delta}\theta}{\Delta t}$ 8: $\hat{\gamma} = \frac{\theta' - \theta}{\Delta t} - \hat{\omega}$ 9: return prob $(v - \hat{v}, \alpha_1 v^2 + \alpha_2 \omega^2)$ · prob $(\omega - \hat{\omega}, \alpha_3 v^2 + \alpha_4 \omega^2)$ 10: $\cdot \operatorname{prob}(\hat{\gamma}, \alpha_5 v^2 + \alpha_6 \omega^2)$

Table 5.1 Algorithm for computing $p(x_t | u_t, x_{t-1})$ based on velocity information. Here we assume x_{t-1} is represented by the vector $(x \ y \ \theta)^T$; x_t is represented by $(x' \ y' \ \theta')^T$; and u_t is represented by the velocity vector $(v \ \omega)^T$. The function **prob** (a, b^2) computes the probability of its argument *a* under a zero-centered distribution with variance b^2 . It may be implemented using any of the algorithms in Table 5.2.

 $x_{t-1} = (x, y, θ)^T$ $x_t = (x', y', θ')^T$

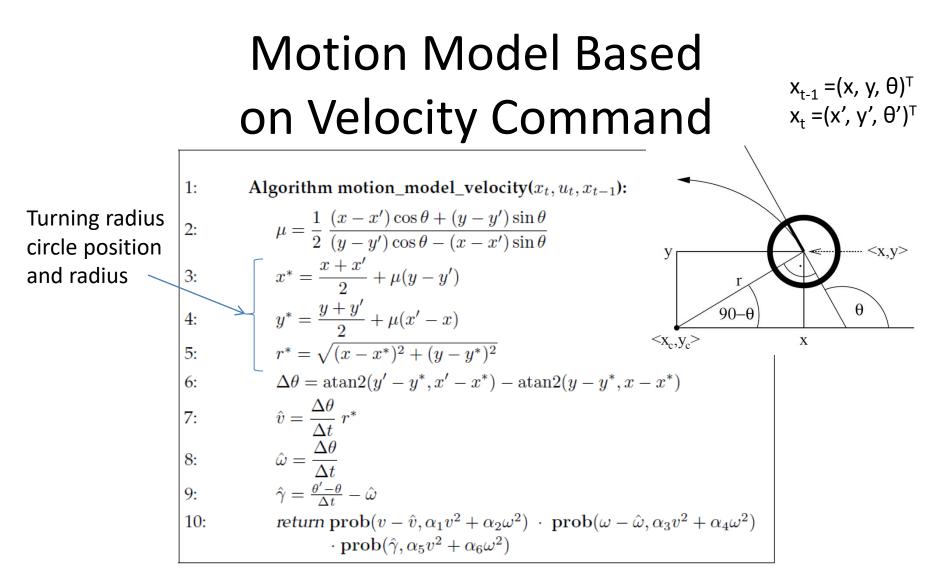


Table 5.1 Algorithm for computing $p(x_t | u_t, x_{t-1})$ based on velocity information. Here we assume x_{t-1} is represented by the vector $(x \ y \ \theta)^T$; x_t is represented by $(x' \ y' \ \theta')^T$; and u_t is represented by the velocity vector $(v \ \omega)^T$. The function **prob** (a, b^2) computes the probability of its argument *a* under a zero-centered distribution with variance b^2 . It may be implemented using any of the algorithms in Table 5.2.

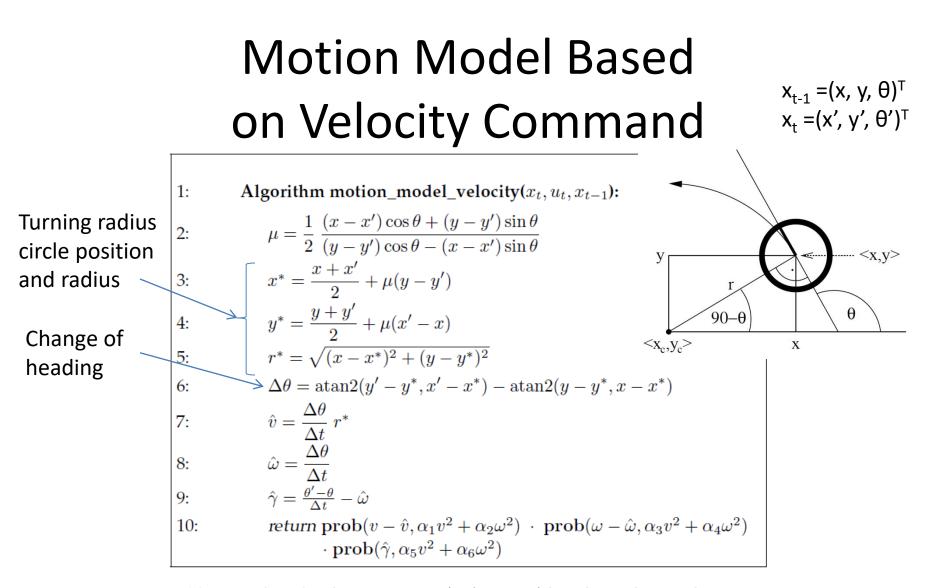


Table 5.1 Algorithm for computing $p(x_t | u_t, x_{t-1})$ based on velocity information. Here we assume x_{t-1} is represented by the vector $(x \ y \ \theta)^T$; x_t is represented by $(x' \ y' \ \theta')^T$; and u_t is represented by the velocity vector $(v \ \omega)^T$. The function **prob** (a, b^2) computes the probability of its argument *a* under a zero-centered distribution with variance b^2 . It may be implemented using any of the algorithms in Table 5.2.

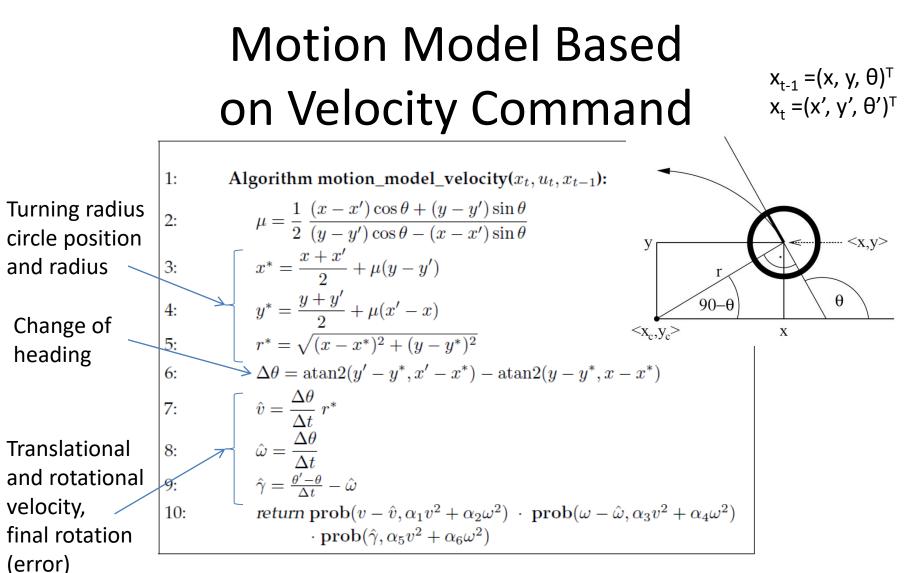


Table 5.1 Algorithm for computing $p(x_t | u_t, x_{t-1})$ based on velocity information. Here we assume x_{t-1} is represented by the vector $(x \ y \ \theta)^T$; x_t is represented by $(x' \ y' \ \theta')^T$; and u_t is represented by the velocity vector $(v \ \omega)^T$. The function **prob** (a, b^2) computes the probability of its argument *a* under a zero-centered distribution with variance b^2 . It may be implemented using any of the algorithms in Table 5.2.

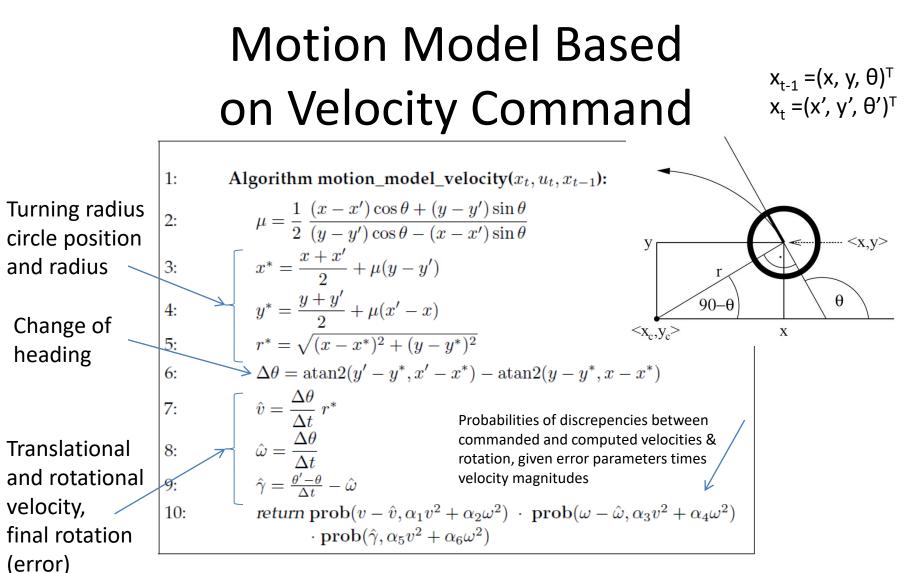


Table 5.1 Algorithm for computing $p(x_t | u_t, x_{t-1})$ based on velocity information. Here we assume x_{t-1} is represented by the vector $(x \ y \ \theta)^T$; x_t is represented by $(x' \ y' \ \theta')^T$; and u_t is represented by the velocity vector $(v \ \omega)^T$. The function **prob** (a, b^2) computes the probability of its argument *a* under a zero-centered distribution with variance b^2 . It may be implemented using any of the algorithms in Table 5.2.

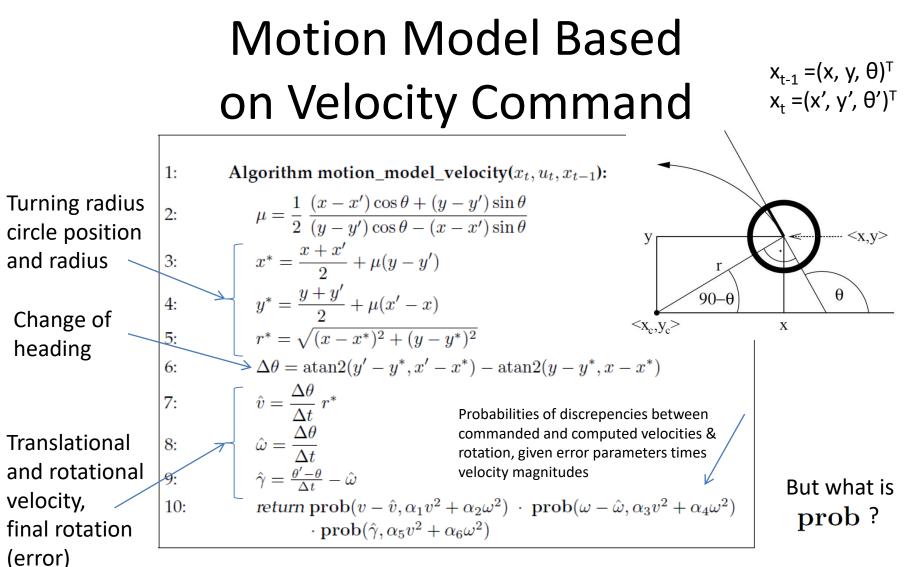


Table 5.1 Algorithm for computing $p(x_t | u_t, x_{t-1})$ based on velocity information. Here we assume x_{t-1} is represented by the vector $(x \ y \ \theta)^T$; x_t is represented by $(x' \ y' \ \theta')^T$; and u_t is represented by the velocity vector $(v \ \omega)^T$. The function **prob** (a, b^2) computes the probability of its argument *a* under a zero-centered distribution with variance b^2 . It may be implemented using any of the algorithms in Table 5.2.

Common Probability Distributions

prob is a zero-mean probability distribution with variance *b*. Examples:

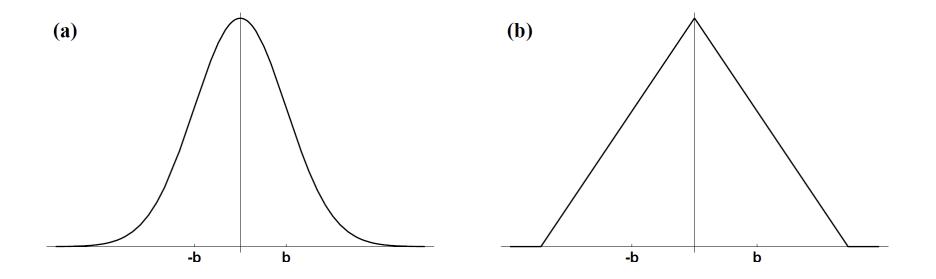


Figure 5.6 Probability density functions with variance b: (a) Normal distribution, (b) triangular distribution.

Computing Prob

1: Algorithm prob_normal_distribution(
$$a, b^2$$
):
2: $return \frac{1}{\sqrt{2\pi b^2}} \exp\left\{-\frac{1}{2}\frac{a^2}{b^2}\right\}$
3: Algorithm prob_triangular_distribution(a, b^2):
4: $return \max\left\{0, \frac{1}{\sqrt{6} b} - \frac{|a|}{6 b^2}\right\}$

Table 5.2 Algorithms for computing densities of a zero-centered normal distribution and a triangular distribution with variance b^2 .

prob_X(a, b^2) is the probability of a occurring for the zero-centered distribution X with variance b^2

Simulating Particles with Error Sampling

Algorithm sample_motion_model_velocity(u_t, x_{t-1}): 1: $\hat{v} = v + \operatorname{sample}(\alpha_1 v^2 + \alpha_2 \omega^2)$ 2: $\hat{\omega} = \omega + \operatorname{sample}(\alpha_3 v^2 + \alpha_4 \omega^2)$ 3: $\hat{\gamma} = \text{sample}(\alpha_5 v^2 + \alpha_6 \omega^2)$ 4: $x' = x - \frac{\hat{v}}{\hat{\omega}}\sin\theta + \frac{\hat{v}}{\hat{\omega}}\sin(\theta + \hat{\omega}\Delta t)$ 5: $y' = y + \frac{\hat{v}}{\hat{\omega}} \cos \theta - \frac{\hat{v}}{\hat{\omega}} \cos(\theta + \hat{\omega}\Delta t)$ 6: $\theta' = \theta + \hat{\omega}\Delta t + \hat{\gamma}\Delta t$ 7: return $x_t = (x', y', \theta')^T$ 8:

Table 5.3 Algorithm for sampling poses $x_t = (x' \ y' \ \theta')^T$ from a pose $x_{t-1} = (x \ y \ \theta)^T$ and a control $u_t = (v \ \omega)^T$. Note that we are perturbing the final orientation by an additional random term, $\hat{\gamma}$. The variables α_1 through α_6 are the parameters of the motion noise. The function **sample** (b^2) generates a random sample from a zero-centered distribution with variance b^2 . It may, for example, be implemented using the algorithms in Table 5.4.

Sampling with Normal and Triangular Distributions

1: Algorithm sample_normal_distribution(
$$b^2$$
):
2: $return \frac{1}{2} \sum_{i=1}^{12} rand(-b, b)$
rand(-b,b) in Java: b * (Math.random() + Math.random() - 1)
3: Algorithm sample_triangular_distribution(b^2):
4: $return \frac{\sqrt{6}}{2} [rand(-b, b) + rand(-b, b)]$
Java: return (Math.random() + Math.random() - 1) * SCALE;
where final double SCALE = Math.sqrt(6 * variance);

Table 5.4 Algorithm for sampling from (approximate) normal and triangular distributions with zero mean and variance b^2 ; see Winkler (1995: p293). The function rand(x, y) is assumed to be a pseudo random number generator with uniform distribution in [x, y].

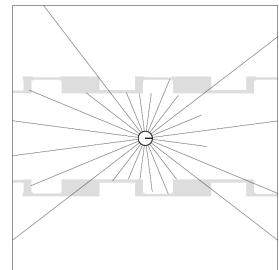
See also: https://stackoverflow.com/questions/33220176/triangular-distribution-in-java

In General

 Collect a lot of motion data and use that data to create your motion model.

Measurement Model

- z_t sensor inputs $p(z_t \mid x_t, m)$ at time t
- x_t pose (state) at time t
- *m* map of the environment
- p(z_t | x_t, m) probability of measuring z_t given pose x_t and map m



Distributions for Modeling Different Kinds of Error Expectations

(a) Gaussian distribution $p_{\rm hit}$

(b) Exponential distribution $p_{\rm short}$

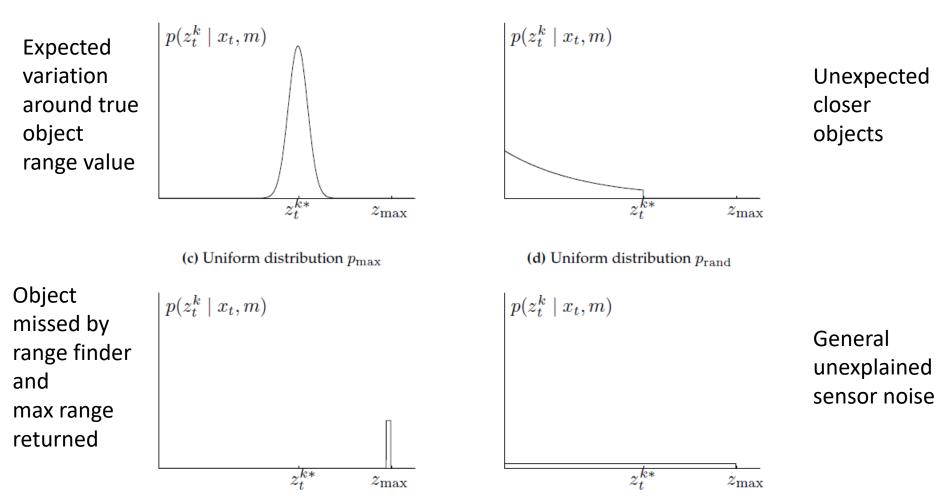


Figure 6.3 Components of the range finder sensor model. In each diagram the horizontal axis corresponds to the measurement z_t^k , the vertical to the likelihood.

Added together...

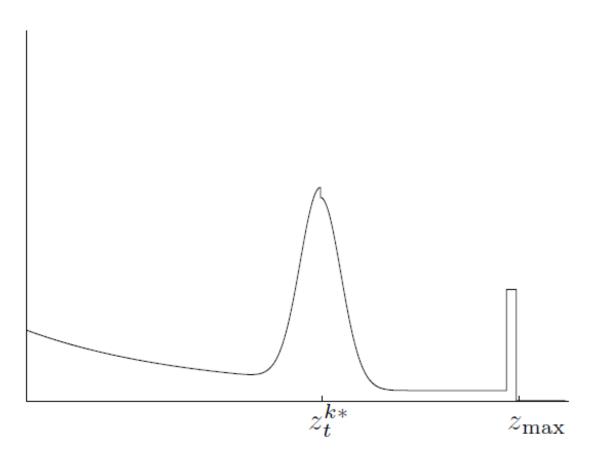


Figure 6.4 "Pseudo-density" of a typical mixture distribution $p(z_t^k \mid x_t, m)$.

... To Make a Weighted Average ...

These four different distributions are now mixed by a weighted average, defined by the parameters z_{hit} , z_{short} , z_{max} , and z_{rand} with $z_{hit} + z_{short} + z_{max} + z_{rand} = 1$.

(6.12)
$$p(z_t^k \mid x_t, m) = \begin{pmatrix} z_{\text{hit}} \\ z_{\text{short}} \\ z_{\text{max}} \\ z_{\text{rand}} \end{pmatrix}^T \cdot \begin{pmatrix} p_{\text{hit}}(z_t^k \mid x_t, m) \\ p_{\text{short}}(z_t^k \mid x_t, m) \\ p_{\text{max}}(z_t^k \mid x_t, m) \\ p_{\text{rand}}(z_t^k \mid x_t, m) \end{pmatrix}$$

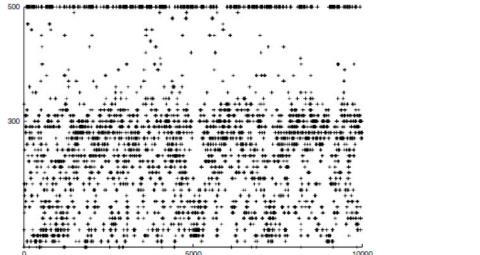
Algorithm beam_range_finder_model(z_t, x_t, m): 1: 2: q=13: for k = 1 to K do compute z_t^{k*} for the measurement z_t^k using ray casting 4: $p = z_{\text{hit}} \cdot p_{\text{hit}}(z_t^k \mid x_t, m) + z_{\text{short}} \cdot p_{\text{short}}(z_t^k \mid x_t, m)$ 5: $+z_{\max} \cdot p_{\max}(z_t^k \mid x_t, m) + z_{\text{rand}} \cdot p_{\text{rand}}(z_t^k \mid x_t, m)$ 6: 7: $q = q \cdot p$ 8: return q

Table 6.1 Algorithm for computing the likelihood of a range scan z_t , assuming conditional independence between the individual range measurements in the scan.

... But How Should We Set the Weights?

(a) Sonar data

(b) Laser data



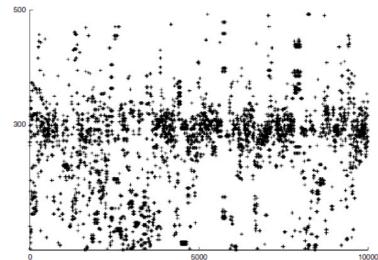


Figure 6.5 Typical data obtained with (a) a sonar sensor and (b) a laser-range sensor in an office environment for a "true" range of 300 cm and a maximum range of 500 cm.

Maximum Likelihood Estimation

- Iteratively tune parameters until the data distribution collected for known distance measurements achieves maximum likelihood.
 Iteratively tune parameters distribution
- (Or manually tune for good match to data.)

Algorithm learn_intrinsic_parameters(Z, X, m): repeat until convergence criterion satisfied for all z_i in Z do $\eta = \left[p_{\text{hit}}(z_i \mid x_i, m) + p_{\text{short}}(z_i \mid x_i, m) \right]$ $+ p_{\max}(z_i \mid x_i, m) + p_{rand}(z_i \mid x_i, m)]^{-1}$ calculate z_i^* $e_{i,\text{hit}} = \eta p_{\text{hit}}(z_i \mid x_i, m)$ $e_{i,\text{short}} = \eta \ p_{\text{short}}(z_i \mid x_i, m)$ $e_{i,\max} = \eta \ p_{\max}(z_i \mid x_i, m)$ 9: $e_{i,\mathrm{rand}} = \eta p_{\mathrm{rand}}(z_i \mid x_i, m)$ $z_{\rm hit} = |Z|^{-1} \sum_{i} e_{i,\rm hit}$ 10: $z_{\rm short} = |Z|^{-1} \sum_i e_{i,\rm short}$ 11: $z_{\max} = |Z|^{-1} \sum_{i} e_{i,\max}$ 12: $z_{\text{rand}} = |Z|^{-1} \sum_{i} e_{i,\text{rand}}$ 13: $\sigma_{\rm hit} = \sqrt{\frac{1}{\sum_{i} e_{i,\rm hit}} \sum_{i} e_{i,\rm hit} (z_i - z_i^*)^2}$ 14: $\lambda_{\text{short}} = \frac{\sum_{i} e_{i,\text{short}}}{\sum_{i} e_{i,\text{short}} z_{i}}$ 15: 16: return $\Theta = \{z_{\text{hit}}, z_{\text{short}}, z_{\text{max}}, z_{\text{rand}}, \sigma_{\text{hit}}, \lambda_{\text{short}}\}$

1: Algorithm learn_intrinsic_parameters(<i>Z</i> , <i>X</i> , <i>m</i>):		
2:	repeat until convergence criterion satisfied	
3:	for all z_i in Z do	Compute the
4:	$\eta = [p_{\text{hit}}(z_i \mid x_i, m) + p_{\text{short}}(z_i \mid z_i)]$	
	$+ p_{\max}(z_i \mid x_i, m) + p_{\mathrm{rand}}(z_i \mid z_i)$	
5:	calculate z_i^*	interpretation for each measurement.
6:	$e_{i,\text{hit}} = \eta \ p_{\text{hit}}(z_i \mid x_i, m)$	each measurement.
7:	$e_{i,\text{short}} = \eta \ p_{\text{short}}(z_i \mid x_i, m)$	Think of these as normalized
8:	$e_{i,\max} = \eta \ p_{\max}(z_i \mid x_i, m)$	weights for the interpretation
9:	$e_{i,\text{rand}} = \eta \ p_{\text{rand}}(z_i \mid x_i, m)$	of each measurement.
10:	$z_{\rm hit} = Z ^{-1} \sum_i e_{i,\rm hit}$	Set the new weights for the weighted sum according to their average relative likelihood
11:	$z_{\rm short} = Z ^{-1} \sum_i e_{i,\rm short}$	
12:	$z_{\max} = Z ^{-1} \sum_{i} e_{i,\max}$	
13:	$z_{\text{rand}} = Z ^{-1} \sum_{i} e_{i,\text{rand}}$	
14:	$\sigma_{\rm hit} = \sqrt{\frac{1}{\sum_i e_{i,\rm hit}} \sum_i e_{i,\rm hit} (z_i - z_i^*)^2}$	Also compute the most likely parameters for our distributions.
15:	$\lambda_{\text{short}} = \frac{\sum_{i} e_{i,\text{short}}}{\sum_{i} e_{i,\text{short}} z_{i}}$	

16:
$$return \Theta = \{z_{hit}, z_{short}, z_{max}, z_{rand}, \sigma_{hit}, \lambda_{short}\}$$

In General

 Collect a lot of measurement data and use that data to create your measurement model.

Project Goal: Monte Carlo Localization for the Kidnapped Robot Problem

- Goals:
 - Acquire a map of the environment, e.g. FASTSLAM or other appropriate techniques.
 - Implement Monte Carlo localization.
 - Solve the Kidnapped Robot Problem:
 - An autonomous robot is transported to an unknown state and must localize.
 - Optional:
 - Designate a robot home state.
 - Have the robot return home after being kidnapped and successfully localizing.

Project Tips

- Set simple goals. Follow the <u>KISS Principle</u>. (You can always set more ambitious goals if you achieve these early.) Example:
 - 1D state space:
 - Have a fixed robot that can rotate range finder(s), a camera, or other localizing sensor to determine state θ .
 - When you start the system, let initial state θ_0 be the "home state".
 - Have the system rotate and sense to build a mapping from sensor inputs to probable locations.
 - After it has terminated mapping, put it in a new mode seeking to return home when it does not appear to be home.
 - "Kidnap" it by rotating the robot and demonstrate that it can relocalize and return home.
- Divide labor: project lead, documentation, version control, sensor model, motor model, etc.
- Plan team meeting times in advance. Budget for 18 total hours for each over 2 weeks beyond class. Log hours.

Project Platform: <u>Anki Cozmo</u>

- Programming tools:
 - Cozmo SDK: <u>https://www.anki.com/en-us/cozmo/SDK</u>
 - cozmo-tools: <u>https://github.com/touretzkyds/cozmo-</u> <u>tools</u>

- Possible projects:
 - 1. Create a new project where the robot is restricted to rotational movement only and uses visual camera sensing to localize.
 - 2. Find and build upon prior Cozmo 2D localization and mapping work you might find.