Fr-om EGS‘eﬂ'Ha[G oA :ijmmm;r\j Lﬂﬂjuajﬁ,_g" ..'2..\,_-}_ get | ) Fried par et N

Foreword

This book brings you face-to-face with the most fundamental idea in com-
puter programming:

The interpreter for a computer language is just another program.

It sounds obvious, doesn’t it? But the implications are profound. If you
are a computational theorist, the interpreter idea recalls Godel’s discovery
of the limitations of formal logical systems, Turing’s concept of a universal
computer, and von Neumann’s basic notion of the stored-program machine.
If you are a programmer, mastering the idea of an interpreter is a source of
great power. It provokes a real shift in mindset, a basic change in the way
you think about programming.

I did a lot of programming before I learned about interpreters, and I pro-
duced some substantial programs. One of them, for example, was a large
data-entry and information-retrieval system written in PL/I. When I imple-

- mented my system, I viewed PL/T as a fixed collection of rules established
by some unapproachable group of language designers. 1 saw my job as not
to modify these rules, or even to understand them deeply, but rather to pick
through the (very) large manual, selecting this or that feature to use. The

~ notion that there was some underlying structure to the way the language was
organized, and that I might want to override some of the language design-
ers’ decisions, never occurred to me. I didn’t know how to create embedded

- sublanguages to help organize my implementation, so the entire program
seemed like a large, complex mosaic, where each piece had to be carefully
shaped and fitted into place, rather than a cluster of languages, where the
pieces could be flexibly combined. If you don’t understand interpreters, you
can still write programs; you can even be a competent programmer. But you
can’t be a master, ;




T ————

viil

Foreword

There are three reasons why as a programmer you should learn about
inferpreters.

First, you will need at some point to implement interpreters, perhaps not
interpreters for full-blown general-purpose languages, but interpreters just
the same. Almost every complex computer system with which people inter-
act in fiexible ways—a computer drawing tool or an information-retrieval

system, for example—includes some sort of interpreter that structures the
interaction. These programs may include complex individual operations—
shading a region on the display screen, or performing a database search—
but the interpreter is the glue that lets you combine individual operations
into useful patterns. Can you use the result of one operation as the input to
another operation? Can you name a sequence of operations? Is the name
local or global? Can you parameterize a sequence of operations, and give
names to its inputs? And so on. No matter how complex and polished the
individual operations are, it is often the quality of the glue that most directly
determines the power of the system. It's easy to find examples of programs
with good individual operations, but lousy glue; looking back on it, I can see
that my PL/I database program certainly had lousy glue.

Second, even programs that are not themselves interpreters have impor-
tant interpreter-like pieces. Look inside a sophisticated computer-aided

design system and you're likely to find a geometric recognition language, a
graphics interpreter, a rule-based control interpreter, and an object-oriented
language interpreter all working together. One of the most powerful ways
to structure a complex program is as a collection of languages, each of which
provides a different perspective, a different way of working with the pro-
gram elements. Choosing the right kind of language for the right purpose,
and understanding the implementation tradeoffs involved: that's what the
study of interpreters is about.

The third reason for learning about interpreters is that programming tech-
niques that explicitly involve the structure of language are becoming increas-
ingly important. Today’s concern with designing and manipulating class
hierarchies in object-oriented systems is only one example of this trend. Per-
haps this is an inevitable consequence of the fact that our programs are
becoming increasingly complex—thinking more explicitly about languages
may be our best tool for dealing with this complexity. Consider again the
basic idea: the interpreter itself is just a program. But that program is writ-
ten in some language, whose interpreter is itself just a program written in
some language whose interpreter is itself .. .. Perhaps the whole distinc-
tion between program and programming language is a misleading idea, and




Foreword ix

future programmers will see themselves not as writing programs in particu-
lar, but as creating new languages for each new application.

Friedman, Wand, and Haynes have done a landmark job, and their book
will change the landscape of programming-language courses. They don't
just tell you about interpreters; they show them to you. The core of the book
is a tour de force sequence of interpreters starting with an abstract high-level
language and progressively making linguistic features explicit until we reach
a state machine. You can actually run this code, study and modify it, and
change the way these interpreters handle scoping, parameter-passing, con-
trol structure, etc.

Having used interpreters to study the execution of languages, the authors
show how the same ideas can be used to analyze programs without run-
ning them. In two new chapters, they show how to implement type checkers
and inferencers, and how these features interact in modern object-oriented
languages.

Part of the reason for the appeal of this approach is that the authors have
chosen a good tool—the Scheme language, which combines the uniform syn-
tax and data-abstraction capabilities of Lisp with the lexical scoping and
block structure of Algol. But a powerful tool becomes most powerful in the
hands of masters. The sample interpreters in this book are outstanding mod-
els. Indeed, since they are runnable models, I'm sure that these interpreters
and analyzers will find themselves at the cores of many programming sys-
tems over the coming years.

This is not an easy book. Mastery of mterpreters does not come easily,
and for good reason. The language designer is a further level removed from
the end user than is the ordinary application programmer. In designing an
application program, you think about the specific tasks to be performed, and
consider what features to include. But in designing a language, you consider
the various applications people might want to implement, and the ways in
which they might implement them. Should your language have static or
dynamic scope, or a mixture? Should it have inheritance? Should it pass
parameters by reference or by value? Should continuations be explicit or
implicit? It all depends on how you expect your language to be used, on
which kinds of programs should be easy to write, and which you can afford
to make more difficult.

Also, interpreters really are subtle programs. A simple change to a line of
code in an interpreter can make an enormous difference in the behavior of
the resulting language. Don’t think that you can just skim these programs—
very few people in the world can glance at a new interpreter and predict



— _ oo

Foreword

from that how it will behave even on relatively simple programs. So study
these programs. Better yet, run them—this is working code. Try interpreting
some simple expressions, then more complex ones. Add error messages.
Modify the interpreters. Design your own variations. Try to really master
these programs, not just get a vague feeling for how they work.

If you do this, you will change your view of your programming, and your
view of yourself as a programmer. You’ll come to see yourself as a designer
of languages rather than only a user of languages, as a person who chooses
the rules by which languages are put together, rather than only a follower of
rules that other people have chosen.

Hal Abelson
Cambridge, MA
August, 2000




