Frem A?\Q? Hﬂfvcm“g&i w) ﬁé man
b:ﬂ”(%W&mrgg <+ A\ arx‘é*i\mg

16 DESIGN AND ANALYSIS OF ALGORITHMS

has a value 4 in its cursor field; we regard this 4 as an index into the array
reclist. The record has a true pointer in field ptr to another anonymous
record. The record pointed to has an index in its cursor field indicating posi-
tion 2 of reclist; it also has a nil pointer in its ptr field. O

1.4 The Running Time of a Program

When solving a problem we are faced frequently with a choice among algo-
rithms. On what basis should we choose? There are two often contradictory
goals.

1. We would like an algorithm that is easy to understand, code, and debug.

2. We would like an algorithm that makes efficient use of the computer’s
resources, especially, one that runs as fast as possible.

When we are writing a program to be used once or a few times, goal (1)
is most important. The cost of the programmer’s time will most likely exceed
by far the cost of running the program, so the cost to optimize is the cost of
writing the program. When presented with a problem whose solution is to be
used many times, the cost of running the program may far exceed the cost of
writing it, especially, if many of the program runs are given large amounts of
input. Then it is financially sound to implement a fairly complicated algo-
rithm, provided that the resulting program will run significantly faster thgn a
more obvious program. Even in these situations it may be wise first to imple-
ment a simple algorithm, to determine the actual benefit to be had by writipg
a more complicated program. In building a complex system it is often de?snr-
able to implement a simple prototype on which measurements and simulations
can be performed, before committing oneself to the final design. It follows
that programmers must not only be aware of ways of making programs run
fast, but must know when to apply these techniques and when not to bother.

Measuring the Running Time of a Program

The running time of a program depends on factors such as:

1. the input to the program,

2. the quality of code generated by the compiler used to create the object
program,

3. the nature and speed of the instructions on the machine used to execute
the program, and)

4. the time complexity of the algorithm underlying the program.
The fact that running time depends on the input tells us that the running

time of a program should be defined as a function of the input. Often, the

running time depends not on the exact input but only on the ‘“‘size” of the

made header point to this newly-created record. Internal to the machine, however, there
is a memory address that can be used to locate the cell.

1.4 THE RUNNING TIME OF A PROGRAM ’ 17

input. A good example is the process known as sorting, which we shall dis-
cuss in Chapter 8. In a sorting problem, we are given as input a list of items
to be sorted, and we are to produce as output the same items, but smallest (or
largest) first. For example, given 2, 1, 3, 1, 5, 8 as input we might wish to
produce 1, 1, 2, 3, 5, 8 as output. The latter list is said to be sorted smallest
first. The natural size measure for inputs to a sorting program is the number
of items to be sorted, or in other words, the length of the input list. In gen-
eral, the length of the input is an appropriate size measure, and we shall
assume that measure of size unless we specifically state otherwise.

It is customary, then, to talk of T(n), the running time of a program on
inputs of size n. For example, some program may have a running time
T(n) = cn?, where c is a constant. The units of T(n) will be left unspecified,
but we can think of T(n) as being the number of instructions executed on an
idealized computer. '

For many programs, the running time is really a function of the particular
input, and not just of the input size. In that case we define T(n) to be the
worst case running time, that is, the maximum, over all inputs of size n, of
the running ‘time on that input. We also consider Tae(n), the average, over
all inputs of size n, of the running time on that input. While T,,,(n) appears
a fairer measure, it is often fallacious to assume that all inputs are equally
likely. In practice, the average running time is often much harder to deter-
mine than the worst-case running time, both because the analysis becomes
mathematically intractable and because the notion of ‘“‘average” input fre-
quently has no obvious meaning. Thus, we shall use worst-case running time
as the principal measure of time complexity, although we shall mention
average-case complexity wherever we can do so meaningfully.

Now let us consider remarks (2) and (3) above: that the running time of a
program depends on the compiler used to compile the program and the
machine used to execute it. These facts imply that we cannot express the run-
ning time T(rn) in standard time units such as seconds. Rather, we can only
make remarks like “the running time of such-and-such an algorithm is propor-
tional to n2.”” The constant of proportionality will remain unspecified since it
depends so heavily on the compiler, the machine, and other factors.

Big-Oh and Big-Omega Notation

To talk about growth rates of functions we use what is known as “‘big-oh”
notation. For example, when we say the running time T(n) of some program
is O(n?), read “big oh of n squared” or just “oh of n squared,” we mean that
there are positive constants ¢ and ng such that for n equal to or greater than
ng, we have T(n) < cn.

Example 1.4. Suppose T(0) = 1, T(1) = 4, and in general T(n) = (n+1)%
Then we see that T(n) is O(n?), as we may let nyp = 1 and ¢ = 4. That is, for
n =1, we have (n+1)2 = 4n2, as the reader may prove easily. Note that we

cannot let ny = 0, because T(0) = 1 is not less than c0? = 0 for any constant
c.O

18 DESIGN AND ANALYSIS OF ALGORITHMS

In what follows, we assume all running-time functions are defined on the
nonnegative integers, and their values are always nonnegative, although not
necessarily integers. We say that T(n) is O(f (n)) if there are constants ¢
and ng such that T(n) = ¢f (n) whenever n = n,. A program whose running
time is O (f (n)) is said to have growth rate f (n).

Example 1.5. The function T(n) = 3n3 + 2n% is O(n%. To see this, let
ng=0 and ¢ =5. Then, the reader may show that for n =0,
3n® + 2n? < 5n3. We could also say that this T(n) is O (n%), but this would
be a weaker statement than saying it is O (n°).

As another example, let us prove that the function 3" is not O(2"). Sup-
pose that there were constants ng and ¢ such that for all n = ny, we had
3" = ¢2". Then ¢ = (3/2)" for any n = n,. But (3/2)" gets arbitrarily large
as n gets large, so no constant ¢ can exceed (3/2)" for all n. O

When we say T(n) is O(f(n)), we know that f(n) is an upper bound on
the growth rate of T'(n). To specify a lower bound on the growth rate of
T(n) we can use the notation T(n) is Q(g(n)), read “big omega of g(n)” or
just ‘“‘omega of g(n),” to mean that there exists a positive constant ¢ such
that T(n) = cg(n) infinitely often (for an infinite number of values of n).t

Example 1.6. To verify that the function T(n) = n3 + 2n2 is Q(n?), let
c=1 ThenT(n) =cn3forn=0,1,....

For another example, let T(n) = n for odd n = 1 and T(n) = n¥100 for
even n = 0. To verify that T(n) is Q(n?), let ¢ = 1/100 and consider the
infinite set of n’s:n = 0, 2,4,6,....0

The Tyranny of Growth Rate

We shall assume that programs can be evaluated by comparing their running-
time functions, with constants of proportionality neglected. Under this
assumption a program with running time O(n?) is better than one with run-
ning time O (n’), for example. Besides constant factors due to the compiler
and machine, however, there is a constant factor due to the nature of the pro-
gram itself. It is possible, for example, that with a particular compiler-
machine combination, the first program takes 100n? milliseconds, while the
second takes Sn> milliseconds. Might not the 5n° program be better than the
100n2 program?

The answer to this question depends on the sizes of inputs the programs
are expected to process. For inputs of size n < 20, the program with running
time Sn3 will be faster than the one with running time 100n2. Therefore, if
the program is to be run mainly on inputs of small size, we would indeed

T Note the asymmetry between big-oh and big-omega notation. The reason such asym-
metry is often useful is that there are many times when an algorithm is fast on many but
not all inputs. For example, there are algorithms to test whether their input is of prime
length that run very fast whenever that length is even, so we could not get a good lower
bound on running time that held for all n = n,.

1.4 THE RUNNING TIME OF A PROGRAM 19

prefer the program whose running time was O(n®). However, as n gets large,
the ratio of the running times, which is 51%100n? = n/20, gets arbitrarily
large. Thus, as the size of the input increases, the O(n®) program will take
significantly more time than the O(n? program. If there are even a few large
inputs in the mix of problems these two programs are designed to solve, we
can be much better off with the program whose running time has the lower
growth rate.

Another reason for at least considering programs whose growth rates are
as low as possible is that the growth rate ultimately determines how big a
problem we can solve on a computer. Put another way, as computers get fas-
ter, our desire to solve larger problems on them continues to increase. How-
ever, unless a program has a low growth rate such as O(n) or O(nlogn), a
modest increase in computer speed makes very little difference in the size of
the largest problem we can solve in a fixed amount of time.

Example 1.7. In Fig. 1.11 we see the running times of four programs with
different time complexities, measured in seconds, for a particular compiler-
machine combination. Suppose we can afford 1000 seconds, or about 17
minutes, to solve a given problem. How large a problem can we solve? In
10° seconds, each of the four algorithms can solve roughly the same size prob-
lem, as shown in the second column of Fig. 1.12.

T(n)
3000

2000

1000

5 10 15 20 n

Fig. 1.11. Running times of four programs.

Suppose that we now buy a machine that runs ten times faster at no addi-
tional cost. Then for the same cost we can spend 10* seconds on a problem
where we spent 10° seconds before. The maximum size problem we can now
solve using each of the four programs is shown in the third column of Fig.
1.12, and the ratio of the third and second columns is shown in the fourth

20 DESIGN AND ANALYSIS OF ALGORITHMS

column. We observe that a 1000% improvement in computer speed yields
only a 30% increase in the size of problem we can solve if we use the O(2")
program. Additional factors of ten speedup in the computer yield an even
smaller percentage increase in problem size. In effect, the O(2") program can
solve only small problems no matter how fast the underlying computer.

Running Time Max. Problem Size ~Max. Problem Size Increase in Max.

T(n) for 10° sec. for 10* sec. Problem Size
100n 10 100 10.0

5n? 14 45 3.2
n’2 12 27 2.3

2" 10 13 1.3

Fig. 1.12. Effect of a ten-fold speedup in computation time.

In the third column of Fig. 1.12 we see the clear superiority of the O(n)
program; it returns a 1000% increase in problem size for a 1000% increase in
computer speed. We see that the O(n%) and O(n?) programs return, respec-
tively, 230% and 320% increases in problem size for 1000% increases in
speed. These ratios will be maintained for additional increases in speed. O

As long as the need for solving progressively larger problems exists, we
are led to an almost paradoxical conclusion. As computation becomes cheaper
and machines become faster, as will most surely continue to happen, our
desire to solve larger and more complex problems will continue to increase.
Thus, the discovery and use of efficient algorithms, those whose growth rates
are low, becomes more rather than less important.

A Few Grains of Salt

We wish to re-emphasize that the growth rate of the worst case running time
is not the sole, or necessarily even the most important, criterion for evaluating
an algorithm or program. Let us review some conditions under which the
running time of a program can be overlooked in favor of other issues.

1. If a program is to be used only a few times, then the cost of writing and
debugging dominate the overall cost, so the actual running time rarely
affects the total cost. In this case, choose the algorithm that is easiest to
implement correctly.

2. If a program is to be run only on ‘“small” inputs, the growth rate of the
running time may be less important than the constant factor in the for-
mula for running time. What is a ‘“‘small” input depends on the exact
running times of the competing algorithms. There dre some algorithms,
such as the integer multiplication algorithm due to Schonhage and Strassen
[1971], that are asymptotically the most efficient known for their problem,
but have never been used in practice even on the largest problems,

1.4 THE RUNNING TIME OF A PROGRAM 21

because the constant of proportionality is so large in comparison to other
simpler, less “efficient” algorithms.

3. A complicated but efficient algorithm may not be desirable because a per-
son other than the writer may have to maintain the program later. It is
hoped that by making the principal techniques of efficient algorithm
design widely known, more complex algorithms may be used freely, but
we must consider the possibility of an entire program becoming useless
because no one can understand its subtle but efficient algorithms.

4. There are a few examples where efficient algorithms use too much space
to be implemented without using slow secondary storage, which may more
than negate the efficiency.

S. In numerical algorithms, accuracy and stability are just as important as
efficiency.

1.5 Calculating the Running Time of a Program

Determining, even to within a constant factor, the running time of an arbi-
trary program can be a complex mathematical problem. In practice, however,
determining the running time of a program to within a constant factor is usu-
ally not that difficult; a few basic principles suffice. Before presenting these
principles, it is important that we learn how to add and multiply in “big oh”
notation.

Suppose that T1(n) and Ty(n) are the running times of two program frag-
ments P, and P,, and that T\(n) is O(f(n)) and T(n) is O(g(n)). Then
Ty(n)+Ty(n), the running time of P, followed by P, is O (max(f(n),g(n))).
To see why, observe that for some constants cy, ¢y, ny, and n,, if n = n,
then Tyn)=<cyf(n), and if n =n, then Tyn) =cyg(n). Let
no = max(ny, ny). If n = ng, then Ty(n) + Ty(n) = cif (n) + cg(n).
From this we conclude that if n =ng then Ti(n) + Tyn) =
(c1 + cymax(f(n), g(n)). Therefore, the combined running time
Ty(n) + To(n) is O (max(f (n), g(n))).

Example 1.8. The rule for sums given above can be used to calculate the run-
ning time of a sequence of program steps, where each step may be an arbi-
trary program fragment with loops and branches. Suppose that we have three
steps whose running times are, respectively, O(n?), O(n®) and O(nlogn).
Then the running time of the first two steps executed sequentially is
O (max(n?, n%) which is O(n®. The running time of all three together is
O (max(n?, n logn)) which is 0 (n%. O

In general, the running time of a fixed sequence of steps is, to within a
constant factor, the running time of the step with the largest running time. In

- rare circumstances there will be two or more steps whose running times are

incommensurate (neither is larger than the other, nor are they equal). For

~ example, we could have steps of running times O (f (n)) and 0(g(n)), where

f(n) =

n*if n is even n2if n is even
ntifnisodd §(M = n3if n is odd

