
Approximating Optimal Dudo Play with Fixed-Strategy
Iteration Counterfactual Regret Minimization

Todd W. Neller and Steven Hnath

Gettysburg College, Dept. of Computer Science, Gettysburg, Pennsylvania, 17325, USA,
tneller@gettysburg.edu, steve.hnath@gmail.com,

http://cs.gettysburg.edu/˜tneller

Abstract. Using the bluffing dice game Dudo as a challenge domain, we ab-
stract information sets using imperfect recall of actions. Even with such abstrac-
tion, the standard Counterfactual Regret Minimization (CFR) algorithm proves
impractical for Dudo, with the number of recursive visits to the same abstracted
information sets increasing exponentially with the depth of the game graph. By
holding strategies fixed across each training iteration, we show how CFR training
iterations may be transformed from an exponential-time recursive algorithm into
a polynomial-time dynamic-programming algorithm, making computation of an
approximate Nash equilibrium for the full 2-player game of Dudo possible for
the first time.

1 Introduction

In recent years, Counterfactual Regret Minimization (CFR) has proven an important
innovation in advancing optimal strategy approximation for large extensive game-trees
of partially-observable stochastic games (POSGs) such as Texas Hold’em Poker [1–3].
Imperfect recall of actions is one means of abstracting such large extensive games, and
the approximation of optimal play with this abstraction has led to play performance
improvements with the non-abstracted game [4]. In this paper, we demonstrate how a
simple modification to CFR using imperfect recall of actions reduces individual train-
ing iterations from exponential to polynomial time complexity, allowing the first com-
putation of approximately optimal strategy for the full game of 2-player Dudo. After
introducing Dudo, we will review imperfect recall of actions and CFR, motivate and in-
troduce Fixed-Strategy Iteration CFR (FSICFR), and compare the performance of CFR
and FSICFR. Finally, we will discuss open questions.

1.1 The Game of Dudo

Dudo is a bluffing dice game thought to originate from the Inca Empire circa 15th cen-
tury. Many variations exist in both folk and commercial forms. The ruleset we use from
[5] is perhaps the simplest representative form, and is thus most easily accessible to
both players and researchers. Liar’s Dice, Bluff, Call My Bluff, Perudo, Cacho, Cachito
are names of variations1.

1 In some cases, e.g. Liar’s Dice and Cacho, there are different games of the same name.

Dudo has been a popular game through the centuries. From the Inca Empire, Dudo
spread to a number of Latin American countries, and is thought to have come to Eu-
rope via Spanish conquistadors [6]. It is said to have been “big in London in the 18th

century” [7]. Richard Borg’s commercial variant, published under the names Call My
Bluff, Bluff, and Liar’s Dice, won the prestigious Spiel des Jahres (German Game of
the Year) in 1993. On BoardGameGeek.com2, the largest website for board game en-
thusiasts, Liar’s Dice is ranked 270/53298 (i.e. top 0.5%)3. Although a single, standard
form of the game has not emerged, there is strong evidence of the persistence of the
core game mechanics of this favorite bluffing dice game since its creation.

Rules: Each player is seated around a table and begins with five standard six-sided
dice and a dice cup. Dice are lost with the play of each round, and the object of the
game is to be the last player remaining with dice. At the beginning of each round, all
players simultaneously roll their dice once, and carefully view their rolled dice while
keeping them concealed from other players. The starting player makes a claim about
what the players have collectively rolled, and players clockwise in turn each either make
a stronger claim or challenge the previous claim, declaring “Dudo” (Spanish for “I
doubt it.”). A challenge ends the round, players lift their cups, and one of the two players
involved in the challenge loses dice. Lost dice are placed in full view of players.

Claims consist of a positive number of dice and a rank of those dice, e.g. two 5’s,
seven 3’s, or two 1’s. In Dudo, the rank of 1 is wild, meaning that dice rolls of rank 1
are counted in totals for other ranks as well. We will denote a claim of n dice of rank r
as n × r. In general, one claim is stronger than another claim if there is an increase in
rank and/or number of dice. That is, a claim of 2× 4 may, for example, be followed by
2×6 (increase in rank) or 4×3 (increase in number). The exception to this general rule
concerns claims of wild rank 1. Since 1’s count for other ranks and other ranks do not
count for 1’s, 1’s as a rank occur with half frequency in counts and are thus considered
doubly strong in claims. So in the claim ordering, 1× 1, 2× 1, and 3× 1 immediately
precede 2× 2, 4× 2, and 6× 2, respectively.

Mathematically, one may enumerate the claims in order of strength by defining
s(n, r), the strength of claim n× r, as follows:

s(n, r) =

5n− bn

2 c − r − 7 if r 6= 1
11n− 6 if r = 1 and r ≤ bdtotal

2 c
5dtotal + n− 1 if r = 1 and r > bdtotal

2 c
(1)

where dtotal is the total number of dice in play. Thus for 2 players with 1 die each,
the claims would be numbered:

Strength s(n, r) 0 1 2 3 4 5 6 7 8 9 10 11

Claim n× r 1× 2 1× 3 1× 4 1× 5 1× 6 1× 1 2× 2 2× 3 2× 4 2× 5 2× 6 2× 1

Play proceeds clockwise from the round-starting player with claims of strictly in-
creasing strength until one player challenges the previous claimant with “Dudo”. At

2 http://www.boardgamegeek.com
3 as of August 17th, 2011

this point, all cups are lifted, dice of the claimed rank (including wilds) are counted and
compared against the claim. For example, suppose that Ann, Bob and Cal are playing
Dudo, and Cal challenges Bob’s claim of 7× 6. There are three possible outcomes:

– The actual rank count exceeds the challenged claim. In this case, the challenger
loses a number of dice equal to the difference between the actual rank count and
the claim count. Example: Counting 6’s and 1’s, the actual count is 10. Thus, as an
incorrect challenger, Cal loses 10− 7 = 3 dice.

– The actual rank count is less than the challenged claim. In this case, the chal-
lenged player loses a number of dice equal to the difference between the claim
count and the actual rank count. Example: Counting 6’s and 1’s, the actual count is
5. Thus, as a correctly challenged claimant, Bob loses 7− 5 = 2 dice.

– The actual rank count is equal to the challenged claim. In this case, every player
except the challenged player loses a single die. Example: Counting 6’s and 1’s, the
actual count is indeed 7 as Bob claimed. In this special case, Ann and Cal lose 1
die each to reward Bob’s exact claim.

In the first round, an arbitrary player makes the first claim. The winner of a chal-
lenge makes the first claim of the subsequent round. When a player loses all remaining
dice, the player loses and exits the game. The last remaining player is the winner. The
following table provides a transcript of an example 2-player game with “1:” and “2:”
indicating information relevant to each player:

Round Actions Revealed Rolls Result
1 1:“2×6”, 2:“3×6”, 1:“5×6”, 2:“Dudo” 1:12566 2:23556 1:loses 1 die
2 2:“3×6”, 1:“4×5”, 2:“5×5”, 1:“Dudo” 1:3555 2:23455 1:loses 1 die
3 2:“3×6”, 1:“Dudo” 1:356 2:24466 1:loses 1 die
4 2:“2×2”, 1:“3×2”, 2:“Dudo” 1:12 2:13456 2:loses 1 die
5 1:“2×6”, 2:“3×2”, 2:“Dudo” 1:26 2:1222 1:loses 2 dice

2 Imperfect Recall and Counterfactual Regret Minimization

In this work, we restrict our attention to two-player Dudo, yet even with this simplifi-
cation, we will show that the number of information sets poses difficulties for modern
computing.

Since Dudo is divided into rounds, the play environment is episodic in nature and
information from previous rounds is not relevant for the decision at hand4. An informa-
tion set consists of sequences of moves and chance outcomes consistent with a player’s
state of knowledge. Thus, a Dudo information set consists of (1) a history of claims
from the current round, (2) the player’s private roll information, and (3) the number
of opponent dice. Let d1, d2, and dmax denote the number of current player 1 dice, the
number of opponent player 2 dice, and the maximum number of dice per player, respec-
tively. In general, the number of information sets for d1 and d2 in a two-player game is

4 The focus here is on optimal play. When seeking rather to model and exploit a suboptimal
opponent, play information from previous rounds would, of course, be relevant.

then the product of the number of possible claim histories 26(d1+d2) (i.e. the size of the
power set of possible claims), and the number of possible rolls

(
d1+5

d1

)
.

However, in Dudo it is impossible to have d1 < d2 = dmax with an even number
of claims. An even number of claims in a claim history implies that the current player
started the current round, and thus either the current round is the first round, or the
current player won the previous round-ending challenge. However, d1 < dmax implies
this is not the first round, and d2 = dmax implies the opponent could not have lost a
previous challenge. Therefore, the current player lost the previous challenge, leading
us to a contradiction. Since exactly half of power sets have an even-numbered size, we
must reduce such information set counts by half. A symmetric argument applies for
d2 < d1 = dmax with an odd number of claims. Our computation counting the number
of power sets then becomes

∑
d1,d2∈[1,5]

{
26(d1+d2)−1

(
d1+5

d1

)
if d1 < d2 = dmax or d2 < d1 = dmax,

26(d1+d2)
(
d1+5

d1

)
otherwise.

= 294, 021, 177, 291, 188, 232, 192.

Thus, a full 2-player, 5-versus-5 dice game of Dudo has over 294 quintillion infor-
mation sets.

2.1 Imperfect Recall of Actions

For common modern machines, 2.9 × 1020 information sets is too large to iterate over
for convergence of mixed strategies. As with successful computational approaches to
Texas Hold’em Poker, we abstract information sets in order to reduce the problem size.
We then solve the abstraction and apply the abstracted policy to the original game. For
Dudo, the growth rate of possible claim sequences is most responsible for the overall
growth of the extensive game-tree. We also note that the later claims of a round are
less-easily supported and thus more often contain reliable information.

Since more recent claims tend to be more important to the decision at hand, our
chosen means of abstraction is to form abstract information sets that recall up to m
previous claims. For example, consider this 5-vs.-5 round claim sequence: 1× 5, 2× 5,
4 × 2, 5 × 4, 3 × 1, 6 × 4, 7 × 2. For a claim memory limit of m = 3, the 5-vs.-5
round information set for each of these decision would be enumerated according to the
current player dice roll enumeration and the enumeration of the up-to-3 most recent
claims: {}, {1× 5}, {1× 5; 2× 5}, {1× 5; 2× 5; 4× 2}, . . . , {3× 1; 6× 4; 7× 2}.

Imperfect recall of actions allows us to trade off fine distinction of judgment for
computational space and time requirements. Figure 1 shows how the number of abstract
information sets varies according to the memory limit m and the number of dice for each
player. As we will see, we can apply imperfect recall of actions without significantly
impacting play performance.

2.2 Counterfactual Regret Minimization

Counterfactual Regret Minimization (Algorithm 1), while defined for general extensive
game-trees, can also be applied to abstracted information sets. We will now summarize

m Information Sets
1 57626

2 2069336

3 21828536

4 380033636

5 2751474854

all 2.9× 1020

(a) No. of abstracted
info. sets with varying
memory limit m.

Opponent Dice
Dice 1 2 3 4 5

1 1794 5928 13950 27156 43056
2 20748 48825 95046 163947 241962
3 130200 253456 437192 693504 971264
4 570276 983682 1560384 2327598 3132108
5 159012 217224 284508 360864 9084852

(b) Information sets for each round with memory
limit m = 3.

Fig. 1. Number of abstracted information sets varying recall limit and number of dice in round.

the Counterfactual Regret Minimization (CFR) algorithm, directing the reader to [1]
and [2] for detailed descriptions and proofs. At each player node recursively visited
in a training iteration, a mixed strategy is computed according to the regret-matching
equation, for which we now provide notation and define in a manner similar to [2].

Let A denote the set of all game actions. Let I denote an information set, and A(I)
denote the set of legal actions for information set I . Let t and T denote time steps.
(Within both algorithms, t is with respect to each information set and is incremented
with each visit to the information set.) A strategy σt

i for player i maps each player
i information set Ii and legal player i action a ∈ A(Ii) to the probability that the
player will choose a in Ii at time t. All player strategies together at time t form a
strategy profile σt. We refer to a strategy profile that excludes player i’s strategy as σ−i.
Let σI→a denote a strategy equivalent to σ, except that action a is always chosen in
information set I .

Let πσ(h) be the reach probability of game history h with strategy profile σ. Further,
let πσ(I) be the reach probability of reaching information set I through all possible
game histories in I , i.e. πσ(I) =

∑
h∈I πσ(h). The counterfactual reach probability

of information state I , πσ
−i(I), is the probability of reaching I with strategy profile

σ except that, counter to the fact of σ we treat current player i actions to reach the
state as having probability 1. In all situation we refer to as “counterfactual”, one treats
the computation as if player i’s strategy was modified to have intentionally played to
information set Ii. Put another way, we exclude the probabilities that factually came
into player i’s play from the computation.

Let Z denote the set of all terminal game histories. Then proper prefix h @ z for
z ∈ Z is a nonterminal game history. Let ui(z) denote the utility to player i of terminal
history z. Define the counterfactual value at nonterminal history h as:

vi(σ, h) =
∑

z∈Z,h@z

πσ
−i(h)πσ(h, z)ui(z). (2)

The counterfactual regret of not taking a at history h is defined as:

r(h, a) = vi(σI→a, h)− vi(σ, h). (3)

The counterfactual regret of not taking action a at information set I is then:

r(I, a) =
∑
h∈I

r(h, a) (4)

The difference between the value of always choosing action a and the average value
of the node strategy is an action’s regret, which is then weighted by the probability that
other player(s) will play to reach the node. This is then averaged over all time steps. If
we define the nonnegative counterfactual regret rT,+

i (I, a) = max(rT
i (I, a), 0), then

Hart and Mas-Colell’s regret-matching equation [8] for the strategy at time T + 1 is:

σT+1
i (I, a) =

rT,+

i (I,a)P
a∈A(I) rT,+

i (I,a)
if

∑
a∈A(I) rT,+

i (I, a) > 0
1

|A(I)| otherwise.
(5)

For each player node, this equation is used to compute action probabilities in pro-
portion to the positive average regrets. For each action, CFR then computes associated
child nodes for each player, and computes utilities of such actions through recursive
calls with updated probabilities for reaching such nodes through the current node. Re-
grets are computed from the returned values, and the value of playing to the current
node is finally computed and returned.

The CFR algorithm is presented in detail in Algorithm 1. The parameters to CFR
are the history of actions, the learning player, the time step, and the reach probabilities
for players 1 and 2, respectively. Variables beginning with v are for local computation
and are not computed according to the previous equations for counterfactual value. In
lines 13, 15, and 20, P (h) is the active player after history h. In lines 14 and 16, ha
denotes history h with appended action a. In line 22, π−i refers to the counterfactual
reach probability of the node, which in the case of players {1, 2} is the same as reach
probability π3−i. In line 32, ∅ refers to the empty history.

The average strategy profile at information set I , σ̄T , approaches an equilibrium as
T → ∞. The average strategy at information set I , σ̄T (I), is obtained by normalizing
sI over all actions a ∈ A(I). What is most often misunderstood about CFR is that this
average strategy profile, and not the final strategy profile, is what converges to a Nash
equilibrium.

3 Fixed-Strategy Iteration CFR

The technique we introduce in this paper, Fixed-Strategy Iteration Counterfactual Re-
gret Minimization (FSICFR), is a significant structural modification to chance-sampled
CFR yet convergence for both relies on the regret-matching equation (5) which is com-
mon to both algorithms.

Essentially, CFR traverses extensive game subtrees, recursing forward with reach
probabilities that each player will play to each node (i.e. information set) while main-
taining history, and backpropagating values and utilities used to update parent node
action regrets and thus future strategy.

When applying chance-sampled CFR to abstracted Dudo, we observed that the
number of recursive visits to abstracted player nodes grew exponentially with the depth

Algorithm 1 Counterfactual Regret Minimization
1: Initialize cumulative regret tables: ∀I, rI [a]← 0.
2: Initialize cumulative strategy tables: ∀I, sI [a]← 0.
3: Initialize initial profile: σ1(I, a)← 1/|A(I)|
4:
5: function CFR(h, i, t, π1, π2):
6: if h is terminal then
7: return ui(h)
8: end if
9: Let I be the information set containing h.

10: vσ ← 0
11: vσI→a [a]← 0 for all a ∈ A(I)
12: for a ∈ A(I) do
13: if P (h) = 1 then
14: vσI→a [a]← CFR(ha, i, t, σt(I, a) · π1, π2)
15: else if P (h) = 2 then
16: vσI→a [a]← CFR(ha, i, t, π1, σt(I, a) · π2)
17: end if
18: vσ ← vσ + σt(I, a) · vσI→a [a]
19: end for
20: if P (h) = i then
21: for a ∈ A(I) do
22: rI [a]← rI [a] + π−i · (vσI→a [a]− vσ)
23: sI [a]← sI [a] + πi · σt(I, a)
24: end for
25: σt+1(I)← regret-matching values computed using Equation 5 and regret table rI

26: end if
27: return vσ

28:
29: function Solve():
30: for t = {1, 2, 3, . . . , T} do
31: for i ∈ {1, 2} do
32: CFR(∅, i, t, 1, 1)
33: end for
34: end for

of the tree. Consider Figure 2, a simple directed acyclic graph (DAG). With increasing
depth, the number of possible paths to a node grows exponentially. If we continue the
DAG pattern to greater depth, we have a linear growth of nodes and exponential growth
of paths.

0 1 2 3Depth: Depth Paths

1 1

2 2

3 4

Fig. 2. Example directed acyclic graph.

Similarly, in the game of Dudo with imperfect recall of actions, there are many
paths to an abstracted information set. (For the remainder of the paper, assume that
information sets are abstracted information sets, and that player nodes represent such
abstracted information sets.) Each added die linearly grows the number of possible
claims, which linearly grows the depth of the game-DAG and exponentially grows the
number of paths to each information set. As will be seen in the experimental results, this
exponential growth makes the application of CFR to the full game of Dudo impractical.

Fixed-Strategy Iteration CFR (FSICFR) divides the recursive CFR algorithm into
two iterative passes, one forward and one backward, through a DAG of nodes. On the
forward pass, visit counts and reach probabilities of each player are accumulated, yet all
strategies remain fixed. (By contrast, in CFR, the strategy at a node is updated with each
CFR visit.) After all visits are counted and probabilities are accumulated, a backward
pass computes utilities and updates regrets. FSICFR computational time complexity is
proportional to the number of nodes times the average node outdegree, whereas CFR
complexity is proportional to the number of node visits times the average node outde-
gree. Since the number of node visits grows exponentially in such abstracted problems,
FSICFR has exponential savings in computational time per training iteration relative to
CFR.

We now present the FSICFR algorithm for two-player, zero-sum games in detail as
Algorithm 2. Each player node n consists of a number of fields:

visits - the sum of possible paths to this node during a single training iteration.
pSumi - the sum of the probabilities that player i would play to this node along each

possible path during a single training iteration.
r - a mapping from each possible action to the average counterfactual regret for not

choosing that action.
σ - a node strategy, i.e. a probability distribution function mapping each possible action

to the probability of choosing that action.
σSum - the sum of the strategies used over each training iteration the node is visited.
player - the player currently taking action.
T - the sum of visits across all training iterations.

v - the expected game value for the current player at that node.

A significant, domain-specific assumption is required for this simple, zero-sum form
of FSICFR: There is a one-to-one correspondence between player nodes and abstracted
information sets, and our visits to nodes must contain enough state information (e.g.
predetermined public and private information for both players) such that the appropri-
ate successor nodes may be chosen. In the case of Dudo, this means that the algorithm,
having predetermined player rolls, knows which player information sets are legal suc-
cessors.

We note that the predetermination of chance node outcomes may present difficulties
for some games or game abstractions where constraints on a chance node are dependent
on the path by which it is reached (e.g. drawing the next card without knowing how
many and thus which cards have been previously drawn). This does not pose a problem
for Dudo or non-draw forms of Poker. Observe that such predetermination should pro-
ceed in topological order, as predetermination of chance nodes affects reachability of
later chance nodes.

Also, we note that if, as in the case of Dudo, the number of visits to a node will be
constant across all training iterations, then one can eliminate the n.visits variable and
replace it with the value 1 in equations.

In summary, consider FSICFR as being similar to the case where we hold the strat-
egy before a CFR training iteration fixed and execute an entire iteration of regret up-
dates without changing strategy until after the iteration. In such a case, all operations
at a node are the same, and we transform the exponential tree-recursion of CFR into
a linear dynamic-programming graph-traversal for FSICFR. As a consequence, node
update frequency is equalized rather than exponentially proportional to depth.

4 Experimental Results

Not only did the performance of FSICFR exceed that of CFR for small numbers of
dice in play, but it was also necessary to the approximation of optimal strategy for the
full 5-versus-5 game of Dudo. A single iteration of standard CFR became prohibitively
expensive for practical Dudo training for even a small number of dice. In this section,
we will begin with experiments to demonstrate real-time learning performance for the
small 2-versus-2 game, compare iteration costs for both algorithms as we scale to more
dice, and see how imperfect recall of actions performs when recall is varied5.

4.1 Learning Outperformance

In order to understand the relative real-time strength of FSICFR versus CFR, we sus-
pend the training threads at specific intervals of seconds (1, 2, 4, 8, etc.), exporting the
current strategy and resuming training. CFR defines the strategy for unvisited player
nodes as the default uniform strategy.

5 All experiments in this section were performed on Dell Optiplex 990 computers with an Intel
Core i7-2600 (3.4 GHz) and 8GB RAM running Ubuntu 11.04.

Algorithm 2 FSICFR(L)
Require: A topologically sorted list L of extensive game DAG nodes.
Ensure: The normalized strategy sum n.σSum , i.e. the average strategy for each player node n,

approximates a Nash equilibrium.
1: for each training iteration do
2: Predetermine the chance outcomes at all reachable chance nodes in L.
3: for each node n in order of topologically-sorted, reachable subset L′ ⊂ L do
4: if n is the initial node then
5: n.visits ← n.pSum1 ← n.pSum2 ← 1
6: end if
7: if n is a player node then
8: Compute strategy n.σ according to Equation 5.
9: if n.r has no positive components then

10: Let n.σ be the uniform distribution.
11: end if
12: n.σSum ← n.σSum + (n.σ · n.pSum1 if n.player = 1 else n.σ · n.pSum2)
13: for each action a do
14: Let c be the associated child of taking action a in n with probability n.σ(a).
15: c.visits ← c.visits + n.visits
16: c.pSum1 ← c.pSum1 + (n.σ(a) · n.pSum1 if n.player = 1 else n.pSum1)
17: c.pSum2 ← c.pSum2 + (n.pSum2 if n.player = 1 else n.σ(a) · n.pSum2)
18: end for
19: else if n is a chance node then
20: Let c be the associated child of the predetermined chance outcome for n.
21: c.visits ← c.visits + n.visits
22: c.pSum1 ← c.pSum1 + n.pSum1

23: c.pSum2 ← c.pSum2 + n.pSum2

24: end if
25: end for
26: for each node n in reverse order of topologically-sorted, reachable subset L′ ⊂ L do
27: if n is a player node then
28: n.v ← 0
29: for each action a do
30: Let c be the associated child of taking action a in n with probability n.σ(a).
31: n.v(a)← (c.v if n.player = c.player else −c.v)
32: n.v ← n.v + n.σ(a) · n.v(a)
33: end for
34: Counterfactual probability cfp ← (n.pSum2 if n.player = 1 else n.pSum1)
35: for each action a do
36: n.r(a)← 1

n.T+n.visits
(n.T · n.r(a) + n.visits · cfp · (n.v(a)− n.v))

37: end for
38: n.T ← n.T + n.visits
39: else if n is a chance node then
40: Let [n.player , n.v]← [c.player , c.v], where c is the predetermined child of n.
41: else if n is a terminal node then
42: n.v ← the utility of n for current player n.player .
43: end if
44: n.visits ← n.pSum1 ← n.pSum2 ← 0
45: end for
46: end for

With a claim history memory limit of 3, we first sought to compare performance
for 1-vs.-1 die training, comparing learned strategy versus optimal strategy. However,
within the first second, both algorithms had largely converged, yielding little contrast.
We therefore turned our attention to 2-vs.-2 die training. Such training relies upon pre-
computed results of 1-vs.-2 and 2-vs.-1 dice training, both of which rely upon 1-vs.-1
die training. For fair comparison, we used the result of 2 million iterations of FSICFR
for these 2- and 3-dice strategies, giving both the same smaller-case training. For each
exported strategy, we played 1 million games divided into two identical sets of 500K
games with the two players trading positions for each set.

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Seconds

W
in

 P
ro

ba
bi

lit
y

FSICFR
CFR

Fig. 3. FSICFR vs. CFR win rates during 2-vs.-2 dice training.

The observed win rates with respect to logarithmic seconds are shown in Figure 3.
The contrast in the relative speeds of the two algorithms was so great that CFR training
still had unvisited nodes and made some use of the default random strategy through
128 seconds whereas FSICFR training had visited all nodes before the first export at
1 second. We can see that FSICFR starts with a significant advantage, peaking at an
86.8% win rate at 4 seconds, after which CFR training gradually decreases that edge.
Since both algorithms rely on the same update equations, they eventually converge to
the same game value. However, CFR’s convergence is slow even for 2-vs.-2 dice and,
after 8192 seconds of training, still wins only 44.7% of games against FSICFR6.

6 Wilson score intervals were used to compute 90% confidence intervals, but such intervals are
so small for 1 million games that they are not easily seen in Figure 3.

4.2 Computational Time Per Training Iteration

The full recursive traversal of CFR causes the relatively slow computation of training
iterations and underperformance against FSICFR. Furthermore, when we increase the
problem size, FSICFR becomes completely necessary. Consider the time cost per train-
ing iteration of FSICFR (Figure 4(a)) and CFR (Figure 4(b)). Entries are omitted in
Figure 4(b) where a single training iteration for a single pair of die rolls takes more
than four days of computation7.

Opponent Dice
Dice 1 2 3 4 5

1 0.3 1.0 2.1 4.9 9.9
2 0.7 2.0 4.7 9.7 18.7
3 2.1 4.7 9.2 18.6 34.4
4 5.0 9.8 18.7 32.4 55.3
5 10.0 18.9 34.8 56.1 94.5

(a) Time (ms) per FSICFR train-
ing iteration averaged over 1000
training iterations.

Opponent Dice
Dice 1 2 3 4 5

1 13 49 1551 97210 6179541
2 26 1507 99019 6310784 -
3 1509 98483 6211111 - -
4 97611 6265326 - - -
5 6290658 - - - -

(b) Time (ms) per single CFR training iteration.

Fig. 4. Time (ms) per training iteration.

Whereas the time cost per FSICFR iteration roughly doubles with each added die in
play, the standard CFR cost increases by almost two orders of magnitude for each added
die. Thus, for more dice in play, FSICFR not only outperforms CFR, but also converges
for all combinations of player/opponent dice before CFR can complete a single training
iteration for a single simulated pair of dice rolls with 7 or more dice. Computation of
Dudo full-game strategy is not feasible with standard CFR. FSICFR makes feasible not
only Dudo strategy computation, but also strategy computation for similarly structured
games with exponentially growing paths to nodes of greater depth.

4.3 Varying Imperfect Action Recall

Finally, we turn our attention to the real-time training performance of FSICFR when
we vary the imperfect action recall limit. As in earlier experiments, we suspend training
threads and export strategies at intervals. In this experiment, however, we train for the
simplest 1-vs.-1 die round and compare performance against a known optimal 1-vs.-1
die strategy computed by Todd Neller and Megan Knauss in 2007 using the technique
of [9]. The results are shown in Figure 5.

First, we observe that by 512 seconds all training for memories of 2 or more claims
converges within 0.15% of optimal performance. Only limiting recall to a single claim
shows poor, erratic performance. Smaller claim memory limits yield smaller extensive
game-trees and converge more quickly with generally lesser performance. However,

7 E.g., a single iteration of 2-vs.-5 dice CFR required 389244980ms ≈ 4.5days.

10
0

10
1

10
2

0.484

0.486

0.488

0.49

0.492

0.494

0.496

0.498

0.5

Seconds

W
in

 P
ro

ba
bi

lit
y

Memory 1
Memory 2
Memory 3
Memory 4
Memory 5

Fig. 5. 1-vs.-1 die FSICFR win rates vs. optimal strategy varying action recall imperfection.

the eventual superior gain in performance is not so significant for larger claim memory
limits. Thus, a claim memory limit of 3 appears to be a reasonable abstraction for high-
quality Dudo play that approximates optimal strategy.

Finally, we note that neither CFR nor FSICFR are guaranteed to converge to a Nash
equilibrium when applied to imperfect recall abstractions. Such abstraction pathologies
have been studied in [10]. However, experimental evidence (e.g. Figure 5) indicates
no such pathological behavior for the application of FSICFR to our imperfect recall
abstraction of Dudo.

5 Conclusion

In this work, we have computed the first approximation of optimal play for the enduringly-
popular 15th-century Inca dice game of Dudo. Abstracting the game through imperfect
recall of actions, we reduced the number of information sets from over 2.9 × 1020 to
under 2.2 × 107. However, Counterfactual Regret Minimization (CFR), a powerful re-
cent technique for competitive computer Texas Hold’em Poker, proved impractical for
application due to exponentially growing recursive path traversals in even the abstracted
game.

Our primary contribution is the observation that, in such games, the exponential
recursive traversal of CFR can be restructured as a polynomial dynamic-programming
traversal if we hold strategies fixed at each node across the entire forward traversal,
updating the regrets and strategies only once per node at the concluding backpropaga-
tion of utilities. Fixed-Strategy Iteration Counterfactual Regret Minimization (FSICFR)

proved not only to be superior in learning rate for a small number of dice in play, but
also necessary for the practical computation of an approximate Nash equilibrium for
the full 2-player game starting with 5-vs.-5 dice.

We conclude with a number of open questions: What is the true game value for the
full game of Dudo, and what is the quality of our full-game approximation? What is the
best parallel version of this algorithm? Given an approximation of optimal policy, what
is the best way to compress the policy so as to minimize the loss of performance? While
we have taken significant steps forward, we recognize that many interesting questions
lie ahead.

The authors would like to thank Marc Lanctot for his great assistance in presenting
the overview of CFR, and Megan Knauss for her contribution to the first computation
of optimal 1-vs.-1 die Dudo strategy.

References

1. Zinkevich, M., Johanson, M., Bowling, M., Piccione, C.: Regret minimization in games with
incomplete information. In Platt, J., Koller, D., Singer, Y., Roweis, S., eds.: Advances in
Neural Information Processing Systems 20. MIT Press, Cambridge, MA (2008) 1729–1736

2. Lanctot, M., Waugh, K., Zinkevich, M., Bowling, M.: Monte carlo sampling for regret min-
imization in extensive games. In Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C.K.I.,
Culotta, A., eds.: Advances in Neural Information Processing Systems 22. MIT Press (2009)
1078–1086

3. Risk, N.A., Szafron, D.: Using counterfactual regret minimization to create competitive mul-
tiplayer poker agents. In: Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: volume 1. AAMAS ’10, Richland, SC, International Foun-
dation for Autonomous Agents and Multiagent Systems (2010) 159–166

4. Waugh, K., Zinkevich, M., Johanson, M., Kan, M., Schnizlein, D., Bowling, M.H.: A prac-
tical use of imperfect recall. In Bulitko, V., Beck, J.C., eds.: SARA, AAAI (2009)

5. Knizia, R.: Dice Games Properly Explained. Elliot Right-Way Books, Brighton Road, Lower
Kingswood, Tadworth, Surrey, KT20 6TD U.K. (1999)

6. Mohr, M.S.: The New Games Treasury. Houghton Mifflin, Boston, Massachusetts (1993)
7. Jacobs, G.: The World’s Best Dice Games, new edition. John N. Hansen Co., Inc., Milbrae,

California (1993)
8. Hart, S., Mas-Colell, A.: A simple adaptive procedure leading to correlated equilibrium.

Econometrica 68(5) (September 2000) 1127–1150
9. Koller, D., Megiddo, N., von Stengel, B.: Fast algorithms for finding randomized strategies in

game trees. In: Proceedings of the 26th ACM Symposium on Theory of Computing (STOC
’94). (1994) 750–759

10. Waugh, K., Schnizlein, D., Bowling, M.H., Szafron, D.: Abstraction pathologies in extensive
games. In Sierra, C., Castelfranchi, C., Decker, K.S., Sichman, J.S., eds.: AAMAS (2),
IFAAMAS (2009) 781–788

