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Abstract. In this paper, we solve and visualize optimal play for the
Great Rolled Ones jeopardy dice game by Mitschke and Scheunemann [4,
p. 4-5]. We share the second player advantage and compute that the
first player should start with 3 compensation points (komi) for greatest
fairness. We present a spectrum of human-playable strategies that trade
off greater play complexity for better performance, and collectively clarify
key considerations for excellent play.

1 Introduction

Great Rolled Ones is a jeopardy dice game first published in 2020 by Sam
Mitschke and Randy Scheunemann [4, p. 4-5] that is similar to the game Zombie
Dice [1]. Both are jeopardy dice games |3, Ch. 6] in the Ten Thousand dice game
family [2]. In this paper, we analyze Great Rolled Ones, computing optimal play
as well as providing additional insights to gameplay.

We begin by describing the rules of Great Rolled Ones, and then define
2-player optimality equations and our method for solving them. We calculate
compensation points (komi) for a fairest game, visualize the policy, and share
observations on the optimal roll/hold boundary. We then present an array of
human-playable policies we have devised along with their performances against
the optimal policy. The policies demonstrate different design trade-offs of greater
complexity for greater win rates, and highlight key play policy considerations.
Finally, we discuss future work and summarize our conclusions.

2 Rules

Great Rolled Ones (GRO) is a dice game for two or more players using 5 standard
(d6) dice. In this paper, we will focus on the two-player GRO game. Players will
have the same number of turns. A turn consists of a sequence of player dice rolls
where rolled 1s are set aside. The turn ends when either the player decides to
hold (i.e. stop rolling) and score the total number of non-1s rolled, or has rolled
three or more 1s, ending the turn and scoring 0 points. A round consists of each
player taking one turn in sequence. Any player ending their turn with a goal
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score of 50 or more causes that to be the last round of the game. At the end of
the last round, the player with the highest score wins.

Given that the rules refer to a singular winner (“cultist with the most rituals”,
i.e. player with the most points) after the last round where “everyone else loses”,
this implies that no player can opt to draw, and thus a player is constrained to
attempt to exceed the score of the current leader in the last round. An optimal
player must attempt to win when a prior player of that round has reached 50 or
more points.

Example round:

— Player 1 initially rolls {1, 1, 3, 4, 5}. Two 1s were rolled and set aside, so 3 is
added to the turn total of non-1s rolled. Player 1 chooses to roll the remaining
three non-1 dice again with a result of {2, 2, 4}. No 1s were rolled and set
aside, so 3 is again added to the turn total for a new turn total of 6. Player
1 chooses to roll the three remaining non-1 dice again with a result of {1, 1,
6}. Two 1s are set aside, for a total of four 1s. Three or more 1s ends a turn
scoring 0 points, so play passes to player 2 with no score change.

Player 2 initially rolls {4, 4, 4, 4, 5}, sets no 1s aside, has a turn total of 5,
and chooses to roll again. Player 2 rolls {4, 4, 4, 5, 5}, setting no 1s aside,
has a new turn total of 10, and chooses to roll again. Player 2 rolls {1, 1, 2, 4,
5}, sets two 1s aside, has a new turn total of 13, and chooses to hold, scoring
13 points and ending the round.

The game thus consists of roll/hold risk assessment in a race to achieve the
top score of 50 or more points within the same number of turns as other players.
Given the player scores, the turn total, and the number of 1s set aside, should
the current player roll or hold so as to maximize the probability of winning?

3 Optimality Equations and Solution Method

We here define optimality equations for the GRO two-player game where player
2 must seek to exceed player 1’s score when it is at least 50.

Nonterminal states are described as the 5-tuple (p, i, j, k, 0), where p is the
current player number (1 or 2), ¢ is the current player score, j is the opponent
score, k is the turn total, and o is the number of rolled 1s set aside.

Let Pewis(d, onew) denote the probability that onew of d dice rolled are 1s
(0 < 0pew < d <5):

d 1 Onew 5 (d_onew)
Petdon) = (" ) (5) 7 (3)

Let Poxceed (4, 0) denote the probability that player 2 will exceed player 1’s
score > 50 where A = j — (i + k) (their score difference) and o is the number of
rolled 1s set aside on player 2’s final turn. Then,
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V ifo>3
. if A<0
zi_:% PneW1S(5 -0, n)Pexceed(A - (5 - 0/)7 0/)

where o' =o0+n

Pexceed(Aa 0) =

otherwise

The probability of winning with a roll P (p, i, J, k, 0) under the assumption
of optimal play thereafter is:

( if p=2

Pexceed (] -1, 0) and
Proll(p7i7j7k70>: 20 o J 250
Zn:O PﬂeW15(5_O7n)P(paz7]7k+5_0/70/)+

LSS Paewis(5 — 0,n)(1 — P(3 — p, 4,4,0,0))

A player can (and should) never hold at the beginning of the turn when the
turn total is 0, so we express this by treating such rule-breaking as a loss. Thus,
the probability of winning with a hold Pyoq(p, 4, j, k, 0) under the assumption of
optimal play thereafter is:

otherwise

0 if k=0or (p=2and j>50,1)
Phold(p,i,j,k,o) =<1 ifp=2and i+ k > 50,
1—P(3—p,j,i+k,0,0) otherwise

Then the probability of winning P(p, i, j, k, 0) under the assumption of opti-
mal play is:

P(p7i7j7 k7 O) = ma*X(Proll(]%iaja k: 0)7 Phold(paiaja k? 0))

What remains is to bound our nonterminal states for computation. The rules
have no restriction on how high a turn total (and thus a score) can go. Our app-
roach is to create a high enough artificial maximum score M (e.g. 100) bounding
i, j, and k such that optimal policy does not expand play to further nonterminal
states for any tested increase in M.

Having bounded our nonterminal state space representation such that p €
{1,2},0 < 4,4,k < M,0 < o < 2, we apply value iteration as in [5| until the
maximum probability change of an iteration is less than e = 10714,

4 Optimal Policy

The optimal roll/hold boundaries of GRO are shown in Fig. 1. Each subfigure
depicts a 3-dimensional (4, j, k) roll /hold boundary for each possible pair of player
p and rolled ones 0. Axes are player score i, opponent score j, and turn total
k. Given a current state inside or outside of the appropriate solid, an optimal
player should roll or hold, respectively.
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50

Turn TOtaI ( k)

(a) Player 1 with no 1s rolled

Turn Total (k) 50

(e) Player 1 with two 1s rolled (f) Player 2 with two 1s rolled

Fig. 1. GRO optimal play visualization. A player in a state inside or outside the gray
solid should roll or hold, respectively. Subfigures are by p, o cases, and axes follow 1,

Jj, k state variables. (Color figure online)
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We first observe a few expected similarities between these roll/hold solids.
First, the i+ %k = 50 diagonal plane indicating a rolling for the goal score appears
in situations where player(s) are close to the end of the game or have little to
risk with many dice to roll. Player 2 must exceed player 1’s score when it reaches
the goal score, so the plane i + k = j + 1 is also a prominent hold plane. As a
player has fewer dice to roll, play becomes more conservative.

There are some interesting differences and subtleties to observe as well. Player
1 plays more aggressively than player 2 with higher minimum hold values with
all other state variables being equal. Also, there are interesting nonlinearities
when player 1 seeks to not just reach 50 points, but to far enough exceed 50 so
as to make it unlikely that player 2 will exceed their final score. Player 2, having
the opportunity to exceed player 1’s final score, has an advantage and generally
plays so as to keep within striking distance of player 1’s score.

Most interesting and complex are the roll/hold boundaries when a player
has rolled one 1. Here we observe nonlinearities in the roll/hold surface for both
players. Whereas one might approximate player with no 1s or two 1s as “always
roll” and “hold at 57, respectively, the roll/hold surface shape is relatively complex
when the current player has rolled one 1 and player scores are not close to the
goal.

5 Komi

The win rate of player 1 when play is optimal is ~0.4495, a ~10% gap from
the second player win rate. This second player advantage comes from the fact
that, while both players have the same number of turns to win, player 2 has the
informational advantage of knowing what score must be exceeded when player
1 scores 50 or more points first.

Komi, i.e. compensation points in the game of Go, serve to make a game more
fair. For GRO, fairest optimal play komi would start player 1 with 3 compensa-
tion points bringing player 1’s win rate up to 0.4955, or within 1% of perfectly
fair play.

6 Human-Playable Policies

In this section, we present a range of human-playable policies mapping states
to roll/hold actions that trade off greater complexity for greater win rate. By
human-playable, we mean that all roll /hold decisions may be made through sim-
ple mental math. As we will see, these policies range from extremely simple rules
to very-complex sub-cases requiring memorization of several constants in order
to approximate roll/hold surfaces.

Each policy is evaluated against the optimal policy with each having equal
probability of playing first. Policy evaluation follows the same value-iteration-
style algorithm of [6]. The performance of each is summarized in Fig. 2.

We present each policy as a method that returns whether or not to roll in
the given state.
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Policy Difference
Roll with 4 or 5 Dice -0.0536
Fixed Hold-At -0.0268

Simple Player and Ones Cases | -0.0201
Keep Pace, End Race, by Case | -0.0100

Fig. 2. Differences between human-playable and optimal policy win rates

6.1 Roll with 4 or 5 Dice Policy

Simplest is to always roll 4 or 5 dice (unless player 2 can hold and win), and
always hold with 3 or fewer dice (unless player 2 must exceed player 1’s game-
ending score):

Algorithm 1: Roll with 4 or 5 dice

Input : player p, player score i, opponent score j, turn total k, ones rolled o
Output: whether or not to roll

1ifp=2A57>50Ai+k < jthen // player 2 must exceed player 1
2 | return frue

3 else if p=2A4i+k > 50 then // player 2 must hold at goal score
4 | return false

5 else // roll with 4 or 5 dice
6 | return o < 2

7 end if

Surprisingly, Algorithm 1 wins only ~5.4% less than the optimal policy. For
all of the nuances of optimal play, this trivial baseline performance immediately
hints at high human play performance possibilities.

6.2 Fixed Hold-At Policy

Next, we consider a policy where we need only remember a few turn total thresh-
olds.

Requiring memorization of only two hold-at constants (24 and 4), Algo-
rithm 2 reduces the optimal play gap to ~2.7%.

6.3 Simple Player and Ones Cases

The fixed hold-at policy had the same play policy for both players with the
exception of player 2’s game-ending constraints. This next policy breaks down
cases not only by number of ones rolled o, but also by current player number p.

Algorithm 3 also requires memorization of only two constants (20 and 5),
yet requires more case memorization. Even so, breaking down cases according to
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Algorithm 2: Fixed hold-at
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Input : player p, player score i, opponent score j, turn total k, ones rolled o
Output: whether or not to roll

ifp=2A7>50Ai+k < jthen // player 2 must exceed player 1
| return frue

else if ¢ + k > 50 then // player 2 holds and wins
| return false

else if o =0 then // keep rolling with 5 dice
| return true

else if 0 =1 then // hold at 24 with 4 dice
| return k < 2

else // hold at 4 with 3 dice
| return k£ < 4

end if

Algorithm 3: Simple player and ones cases

© 00N O A W N
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Input : player p, player score ¢, opponent score j, turn total k, ones rolled o
Output: whether or not to roll

if p =1 then // player 1 cases
if 0 =0 then // keep rolling with 5 dice
| return true
else if o =1 then // hold at goal with > 20 lead with 4 dice
| return k < max(50 — 4,20 + j — 9
else // hold at 5 or goal with 3 dice
| return k < min(50 — i, 5)
end if

else // player 2 cases
if j > 50 then // player 2 must exceed player 1
| return i+ k < j
else if ¢ + k > 50 then // hold at goal score
| return false
else if 0 < 2 then // roll with 4 or 5 dice
| return f{rue
else // hold at 5 or goal with 3 dice
| return k < min(50 — i,5)
end if

end if
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player p and the number of ones rolled o impressively reduces the optimal play
gap to ~2.0%.

In the trade-off of increased cognitive complexity for increased performance,
this algorithm might represent a preferred middle ground for players. In prose,
we might describe this policy as follows:

For player 1, roll with 5 dice. With 4 dice, hold at or beyond the goal with
a lead of at least 20. For player 2, if player 1 has reached the goal score,
exceed it. Otherwise, if player 2 can hold and win, do so. Otherwise, player
2 always keeps rolling with 4 or 5 dice. With 3 dice, both players should
hold if it reaches the goal score or if the turn total is at least 5.

6.4 Keep Pace, End Race, by Case

Algorithm 4 also breaks down cases by player p and number of ones set aside o,
computing hold-at values sensitive to score difference § = j — ¢ combined with
roll-to-the-end thresholds.

This policy requires even more case analysis, being sensitive to individual
scores or score sums reaching progress thresholds. Ten constants are consider-
ably more to remember, as well. Still, this extra work even better approximates
optimal play performance, closing the optimal play gap to ~1.0%.

7 Future Work

One might use supervised learning on our roll/hold or win probability tables to
compress a good play policy in memory without significantly sacrificing perfor-
mance. Given that relatively simple human playable policies can perform within
a few percent of optimal, it would be interesting to see what memory reductions
via supervised learning are possible that closely approximate optimal play.

We conjecture that memory-efficient supervised learning models that approx-
imate the probability of winning for each (p, 0) pair could be used with a one-step
backup of optimality equations in order to make an excellent, compact compu-
tational approximation of optimal play policy.

Another possibility for future work is to survey expected game lengths of
the most popular jeopardy dice games, and tune the GRO goal score so as to
optimize its game length. In games of chance, there is a trade-off between game
brevity and the rewarding of player skill. With few decisions, a player’s skill is
difficult to discern through the game’s variance. With many decisions, a player’s
skill will be rewarded with a noticeable gain in win rate (e.g. backgammon).
However, a game of chance with too many decisions can become tedious.

We believe there is potential to use our analytical tools or reinforcement
learning approximations of optimal play in order to advance Al-assisted game
design for jeopardy dice games.
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Algorithm 4: Keep pace, end race, by case
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Input : player p, player score i, opponent score j, turn total k, ones rolled o
Output: whether or not to roll

d—j—1
if p =1 then // player 1 cases
if 0 =0 then // hold at goal with > 38 lead with 5 dice
| return k < max(50 — i, 38 + 0)
else if o =1 then
h+—22+9 // hold with a > 22 lead with 4 dice
if ¢ > 10Vv j > 23 then
// if player 1 / 2 has scored 10 / 23, resp.
h «— max(50 — i, h) // then at least roll for the goal
end if
return k < h
else if i + 5 > 71 then
// reach the goal when the player score sum reaches 71
return k < 50 — ¢
else // hold at 5 or goal with 3 dice
| return £ < min(50 — ¢, 5)
end if
else // player 2 cases
if 7 > 50 then // player 2 must exceed player 1
| return k£ < ¢
else if o =0 then // keep rolling with 5 dice
| return true
else if o =1 then // with 4 dice
if ¢+ > 20V j > 32 then
// if player 1 / 2 has scored 20 / 32, resp.
return k£ < 50 — ¢ // then roll for the goal
else // else hold with > 28 lead
| return k£ < 1846
end if
else if i + j > 84 then
// reach the goal when the player score sum reaches 84
return k < 50 — ¢
else // hold at 5 or goal with 3 dice
| return k < min(50 — i,5)
end if
end if
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8 Conclusions

In this paper, we have computed and visualized optimal play for the 2-player case
of the Great Rolled Ones jeopardy dice game. We determined that the first player
should start with 3 points for fairest play. In visualizing roll-hold boundaries,
we showed a number of interesting nonlinear features, and gave visual insight to
the play implications of player 2’s advantage from always having the last turn.

In addition, we presented a variety of human-playable strategies, ranging from
trivial to complex, with optimal play performance gaps ranging from ~5.4% to
~1.0%, respectively. For casual play, we are especially pleased to recommend
Algorithm 3 with an optimal play performance gap of only ~2.0%.

The Great Rolled Ones game has a fairly complex optimal roll-hold policy
boundary, as shown in Fig.1, and yet relatively simple human-playable poli-
cies offer decent performance against optimal play, revealing some of the key
considerations for excellent play.
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