
FairKalah: Fair Mancala
Competition

Todd W. Neller

Overview

• Java, Python, and Ludii General Game System support for fair
Mancala game competition to teach:
• Heuristic evaluation

• Alpha-beta pruning

• Time management for real-time constraints

• Outline:
• Mancala rules

• FairKalah

• Code provided

• Future improvements

Mancala (a.k.a. Kalah) Materials

• Board with
• 6 play pits per side for each

player

• 2 score pits, one to the right
end of the board for each
player

• 48 pieces initially distributed
4 per play pit in standard
game

Mancala (a.k.a. Kalah) Materials

• Board with
• 6 play pits per side for each

player

• 2 score pits, one to the right
end of the board for each
player

• 48 pieces initially distributed
4 per play pit in standard
game

Player 1 play pits

Player 1

Player 1
score pit

Mancala Move

• A player’s move in Mancala consists of
• Selecting their non-empty play pit,

• Picking up all pieces from that pit,

• And “sowing” them counter-clockwise, one per pit, skipping the opponent’s
score pit.

Player 1 sowing pattern

Mancala Move Example

• Player 2 (top) plays 8 pieces from upper-leftmost play pit:

Mancala Move Example

• Player 2 (top) plays 8 pieces from upper-leftmost play pit:

(skipped)

Player 2 sowing pattern

Mancala Move Example

• Player 2 (top) plays 8 pieces from upper-leftmost play pit:

(skipped)

Mancala Move Example

• Player 2 (top) plays 8 pieces from upper-leftmost play pit:

(skipped)

Mancala Free Move

• If your last piece sown is to your score pit, take another turn.

Player 1 to play

Player 1 to play again

Mancala Capture

• If your last piece sown is to an empty play pit on your side, capture
that piece and any in the opponent’s opposite pit (which may be
empty). Captured piece(s) are placed in the player’s score pit.

capturecapture

Mancala Game End

• “Starvation” - At the end of a turn, when no pieces remain in one
player’s play pits, their opponent scores remaining play pits.

• The player that scores more pieces wins. If both players score the
same number of pieces, the game is a draw (i.e. tie).

Problem: Mancala is Unfair

• The first of two perfect players
will win by 10 points. (Irving,
Donkers, Uiterwijk, 2000)

Solution: FairKalah – fair initial board states

• We provide 254 initial states with 48 pieces arranged to be fair, i.e.
two perfect players are proven to draw.

• This makes improvements to heuristic functions more apparent, as
Mancala’s unfairness obscured relative player strength.

FairKalah Project Code Provided

• Java/Python object-oriented implementations of
• Mancala/FairKalah game tree node

• Depth-limited minimax

• A text-based human player interface for testing and demonstration

• A simple, real-time player using depth-limited minimax and a score
difference heuristic

• Round-robin FairKalah tournament code that produces game
transcripts and a spreadsheet summary

• Also provided: suggested readings, video presentation of
rules, integration with Ludii general game system.

Project Stages

• For a two-week project, students:
• Devise an improvement to the score difference heuristic, empirically testing

performance with provided tournament code

• Implement alpha-beta pruning, thus speeding search and allowing greater
search depth limits in the same real-time limits

• Devise improved time-management, seeing iterative-deepening as an
anytime algorithm and empirically testing how to better distribute reasoning
time across a game.

• For a longer (e.g. term) project, students can learn improved
heuristics from play data.

Coming Soon: Optimal Play Dataset

• When a current research project is concluded, the Model AI
Assignments page for FairKalah will include access to an optimal play
dataset with:
• Input state description (pieces per pit)

• Output game value of state

• Output Boolean indication of optimal move(s)

• From these, students can apply machine learning techniques to build
better heuristics.

Conclusion

• This assignment has been refined since the fall of 2000 and has long
been a student favorite.

• With fair play for the most recent iterations, students have had much
greater success in discerning heuristic evaluation improvements.

• Although optimal play is known and computable, applying both
tighter time and memory limits will preserve this assignment’s
relevance.

• Enjoy!

Questions?

