
Learning Adaptive Game Soundtrack Control

Aaron Dorsey, Todd W. Neller, Hien G. Tran, Veysel Yilmaz
Gettysburg College

{dorsaa01, tneller, tranhi01, yilmve01}@gettysburg.edu

Abstract

In this paper, we demonstrate a novel technique for dynami-
cally generating an emotionally-directed video game sound-
track. We begin with a human Conductor observing gameplay
and directing associated emotions that would enhance the ob-
served gameplay experience. We apply supervised learning to
data sampled from synchronized input gameplay features and
Conductor output emotional direction features in order to fit a
mathematical model to the Conductor’s emotional direction.
Then, during gameplay, the emotional direction model maps
gameplay state input to emotional direction output, which is
then input to a music generation module that dynamically
generates emotionally-relevant music during gameplay. Our
empirical study suggests that random forests serve well for
modeling the Conductor for our two experimental game gen-
res.

Introduction
We believe that music can enhance a player’s emotional ex-
perience of a game in the same way a movie soundtrack cues
and heightens emotions of the viewer. A good soundtrack
can increase player engagement, whereas a bad soundtrack
can be detrimental to the player’s experience. In this work,
we perform two empirical studies that focus on the use of AI
and machine learning techniques to dynamically create and
adapt a game soundtrack to enhance a player’s experience
by attempting to model a human Conductor’s emotional di-
rection of the soundtrack to the benefit of the player.

First, we survey related work and overview the architec-
ture of our approach in the field of adaptive and dynamic
music composition. Next, we describe the data collection
and processing methodology, algorithmic parameters, and
results of our experiments along with the music generation
models we employed for each experiment (Yilmaz 2022).
Finally, we discuss potential future work and share our con-
clusions.

Related Work
Dynamism was a key point in our research. With respect
to Redhead’s categorizations regarding dynamism in video
game soundtracks, we ultimately wanted the music to adapt

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to the game-play (adaptivity) as well as be generated by an
algorithm, making it generative and algorithmic (Redhead
2018). To that end, Léo provided us the tools to adjust mu-
sical elements to reflect the intended tone (Léo 2020). Léo’s
vertical re-orchestration technique that modified instrumen-
tation while keeping the same melodic and harmonic struc-
ture, shaped our first music algorithm approach in this paper.

Another influential work by Rayman provided examples
that used dynamic and adaptive music generation algorithms
that shaped our first approach (Rayman 2014; Casella and
Paiva 2001). The detailed depiction of the adaptive music
structure in Mario Kart Racing that was described in the pa-
per influenced our Player-Conductor duality as well as pa-
rameterization techniques. Junior on the other hand, gave
us the idea of using probabilistic decision with contrapun-
tal music composition, influencing our own Markov chain
implementation (Escarce Junior et al. 2021). The source lim-
ited itself to an arpeggio-oriented musical structure while we
extended it using the contrapuntal fundamentals, believing
that a probabilistic approach may prove useful.

Plut (Plut and Pasquier 2020) lists out the current limita-
tions of adaptive and generative game soundtrack composi-
tion techniques while providing an overview on some adap-
tations in the gaming industry. It is pointed out that some
games can take up to 100 hours to complete, making man-
ual composition of novel music prohibitively expensive. Fur-
ther, Plut explains that “. . . adaptive music cannot necessar-
ily match the extreme breadth of gameplay possibilities.” He
further explains how the current level of generative music is
deemed too risky to be adopted even by large game compa-
nies with good financial means, which in turn limits pursuit
of this academic field. While this resource helps us define
the problem of diversity in game soundtracks, it also helps
us with some tools to address this problem as well as help us
define some useful terms such as “vertical composition” and
“instrument groups”. We utilize such concepts in producing
adaptive and generative game soundtrack algorithms.

Architectural Overview
In this section, we overview our approach to learning the
adaptive AI controller for a game’s soundtrack and the
main soundtrack loop using that controller. The learning
architecture is depicted in Figure 1. There are two human
roles: Player and Conductor. The Player acts as a playtester,

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

16070



Figure 1: Learning architecture

Figure 2: Soundtrack generation cycle.

playing so as to broadly sample a range of possible game
states. The Conductor observes Player gameplay and pro-
vides soundtrack emotional cues to be paired with game
states they observe. Timestamped state input features are
sampled and recorded from gameplay, while timestamped
emotional output features are recorded from the Conductor
observing the gameplay.

These input and output features are then merged accord-
ing to their asynchronous timestamps as described in the
section “Experiment 1: Bouncy Shots”. Timestamps of the
emotional output features are adjusted for both computer
clock synchronization plus a delay to account for Conductor
feedback reaction time. With timestamp-merged input and
output feature pairs, we then apply supervised learning to
produce a predictive model from inputs (game-play states)
to outputs (the Conductor’s emotional associations).

A separate music generation module (Figure 2) takes
emotional direction predicted by the learned model and pro-
duces the soundtrack in real-time in response to gameplay
states. For example, we might prefer major or minor scales
and chords for states tending towards winning or losing, re-
spectively. Also, we might prefer greater volume and more

Model RMSE
(Intensity)

RMSE
(Winning)

Baseline 0.435 0.196
Linear Regression 0.245 0.192
Gradient Boosting 0.389 0.179
Bayesian Ridge 0.387 0.193
Random Forest
Regression 0.199 0.161

Lasso (alpha=1) 0.299 0.229

Table 1: Bouncy Shots Model Statistics

frequent percussion for states that are more intense.
It is important to observe that the Conductor AI is aware

of the Conductor’s intended emotional state for the Player
as opposed to the Player’s actual emotional state. We intend
that the Conductor be free to influence the emotional expe-
rience of the game through adaptive soundtrack control.

Experiment 1: Bouncy Shots
Bouncy Shots (DaFluffyPotato 2022) is a simple single
player game where the objective is to push the ball past an
AI opponent into the other side’s goal to score. Both players
can knock the ball to their opponent’s goal through colli-
sions with projectiles shot from their own base. Over time,
the game gets more complicated and hectic. If enough time
passes by without a point being scored, additional balls will
be sequentially added to the field. Also, the precision and
accuracy of the opponent increases with the player’s score,
so the game becomes increasingly difficult over time. The
game ends once the opponent scores.

Experimental Design
For our first experience, we collected over 120,000
timestamp-merged input-output pairs from over 2.8 hours of
gameplay (which was enough to thoroughly explore a small
game such as Bouncy Shots). The gameplay input features
that we collected from Bouncy Shots are:

Figure 3: Example of the game Bouncy Shots.

16071



• Score (integer, range [0, 16])
• Number of balls on screen (integer, range [1, 5])
• Number of projectiles on screen (integer, range [0, 9])
• Number of player input events per 0.1 seconds averaged

over the last 0.5 seconds. (float, range [0.0, 9.0])
• Average distance of balls from the middle of the screen

(pixels, range [−185.0, 185.0])
• Fraction of balls on the player’s side (float, range
[0.0, 1.0])

• Average forward/backward velocity of the balls (float,
range [−3.37, 3.61])

The emotional outputs are:

• Intensity (float, range [0.0, 1.0])
• Winning Status (float, range [0.0, 1.0])

All state variable features are sampled every 100 millisec-
onds. Since different features were on completely different
orders of magnitude, collected data was normalized with
min-max scaling (scikit-learn.org 2022), where each value
was proportionally scaled to the range [0, 1]. This is to en-
sure that all models can work with the same normalized data
for better comparison independent of feature magnitude.

For our data collection process, one member of our group
(designated the Player) generated the described input vari-
ables from their gameplay, which was automatically col-
lected by our program, while another member (designated
the Conductor) provided real-time judgment of the inten-
sity and winning status output of the game while watching
the gameplay. To achieve this, the Conductor used an in-
terface to continually direct the perceived gameplay emo-
tions of success and intensity on a scale of 0 to 1. Since
this emotional data recording is inherently subjective, we
rotated the roles of Conductor and Player among research
team members in order to get a more balanced analysis of the
games. Because the human Conductors conducted on differ-
ent gameplays, it is not possible for us to provide a standard
deviation on conductors differences.

In order to facilitate mathematical modeling of the Con-
ductor’s musical direction, we needed to first merge the
timestamped sampling of gameplay feature data with the
timestamped sampling of the Conductor’s emotional direc-
tion. The gameplay data and the emotional input data have
a different number of timestamps, and there is no guarantee
that a timestamp from gameplay data will also match one of
the emotional data and vice versa.

Our merge algorithm takes the timestamped input game
state features and output emotional directions as two queues
of sampled events. Initially, and when the two queue head
timestamps are equal, we dequeue and merge the events
of both queues into an input-output pair (initially with the
greater timestamp). In all other cases, we dequeue the in-
put/output event with the lesser timestamp, and merge it (us-
ing that timestamp) with the most recently dequeued out-
put/input event, respectively.

Before collecting data, we synchronized timestamps
across computers using the time.gov website to measure the
difference between the clocks of the Player and Conductor

computers. We then divided the role of Player and Conduc-
tor among ourselves, and began playing the game to generate
our data. After that, we used our merging program to process
the emotional data and gameplay data to supply input/output
pairs for supervised learning.

From our collected data, we want to create a mathematical
model to substitute the directing of the Conductor in real-
time. In order to make sure our machine learning method
was useful, we also tested a simple baseline heuristic that
did not use AI: we predicted intensity based solely off of the
number of balls on screen and winning based off of the av-
erage ball distance from the middle of the screen. We had to
find a predictive analysis machine learning model that would
suit our dataset. For our choice of error measure, we decided
to use root mean squared error (RMSE), so we used models
(with default hyperparameters) appropriate for RMSE, such
as ordinary least squares linear regression, gradient boost-
ing regression, Bayesian ridge regression, lasso regression
(with alpha = 1), and random forest regression. We per-
formed train-test-split with a size of 50-50 on these above
mentioned models and all RMSE values are measured on
prediction of the held-out test data.

Experimental Results
Based on the models tested (Figure 1), we can see that not
only are most machine learning models better than the base-
line in both respects, but the random forest regression gives
the lowest RMSE and the most accurate predictions of emo-
tional responses from game data. We used the default hyper-
parameters provided by scikit-learn for testing. When play-
ing the game after incorporating our different models, we
subjectively judged that the best play experience came from
the random forest regression model. The music changed
more fluidly and noticeably compared to other models.

One source of bias that may arise from using human-
created data is the time it takes for the humans to react to
a rapidly changing game state. To correct for this, we added
different amounts of time to the timestamps of game data so
that a potentially late reaction of the Conductor and a game-
changing event can be matched up (Figure 4). We see that
a lag value of 250 milliseconds provides the overall lowest
RMSE for both intensity and winning status, meaning that it
is the optimal amount of lag for the most predictive power
for this experiment.

We also tested whether a polynomial regression of higher
degree might have better predictive power than a linear re-
gression (Figure 5). We tested from one degree up until four,
and we see that the RMSE remains the lowest for both in-
tensity and winning status at one degree. The best model for
Bouncy Shots, therefore, is random forest regression where
the game data it trains on has been adjusted forward 250 mil-
liseconds, and calculates a first-degree polynomial. For one
trying our system on a similar game to Bouncy Shots, these
parameters would be a good place to start.

Musical Structure for Experiments I and II with
Adaptive Instrumentation Volume
Given the input intensity and winning state emotional val-
ues from the model, we designed a method to adapt com-

16072



Figure 4: Lagged RMSE values of Bouncy Shots.

Figure 5: RMSE values of Bouncy Shots varying polynomial
degrees.

posed music using those two variables. For experiment pur-
poses, we rely on a base MIDI soundtrack that was com-
posed by one of our members. Our approach utilized the
instrumentation technique, in which the tone of the mu-
sic was adjusted using different instruments playing the
same melody/progression (Collins 2008). This technique, al-
though simple, proved quite effective (Figure 6).

The chord progression is in a simple Tonic-Predominant-
Dominant-Tonic form as shown in Figure 7. The simplicity
of the form helps the melody easily sound major (happy)
or minor (sad) only using the instrumentation technique. In
total, there are 4 prerecorded tracks that play the same mu-
sic with very small variances and different instruments. The
tracks are as follows:

• Winning: String Section
• Intense: Percussion and Choir Sections
• Losing: Piano Section
• Winning and Intense: Brass Section

We judged that (1) the feeling of winning was best given
through strings due to their bright color, (2) percussion in-
tensifies the music by giving it a beat, (3) the choir reflects a
sense of fullness due to its resonant nature, (4) the brass sec-
tion gives the impression of glory, which makes it perfect
to reflect both intensity and winning values, and (5) the pi-
ano part composed in the higher ranges implies sadness and
sentiment. From the figure, one could see a direction going
from “Losing and Calm” to “Winning and Intense”. As the
player is winning an intense game, the instrumentation gets
tenser.

The volumes of those tracks are directly determined by
the intensity and winning status values. An intensity value
of 0 means that the calmness value is 1, and the same goes
for winning and losing values. So, for example, when the
winning value is 0.8 and the intensity value is 0.4 at a given
time, the volumes of the tracks at that time are as follows:

• String Section: 0.8, the winning value of the game
• Percussion and Choir Sections: 0.4, the intensity
• Brass: 0.6, arithmetic mean of intensity and winning
• Piano: 0.2, losing value = 1 - winning value = 1 - 0.8

Figure 6: Graph of our instrumentation plan.

Musical Structure for Experiment I with Markov
Chain Music Generation
Since counterpoint composition concerns the movement of
voices with respect to each other, the principles of coun-
terpoint can be helpful for creating an unending, evolving,
adaptive musical soundtrack. Also, a probabilistic system
can serve to diversify music. We speculated that a design
using a Markov Chain could increase variety while preserv-
ing musical continuity. With those ideas, we implemented a
3-track system in which the tracks have distinct rhythmical
structures that allow them to move at different times. This
way, we preserve a harmonic foundation while also having
a movement in music.

The tracks are assigned 3 notes as a starting point, after
which the notes in each track are constantly updated. The
tracks’ notes change two, three, and four times per measure,
respectively. Every time that the note played by a track is
updated, the algorithm makes a probabilistic deduction with
respect to the remaining 2 notes that are kept being played
on the other 2 tracks. Note that it is possible for the note to
stay the same.

Figure 7: Chord progression.

16073



Chordal harmony, which is the popular music theory ap-
proach in which the functions of the chords at a given in-
stance are analyzed, did not fit our needs since we were look-
ing for an ever-evolving and diverse harmonic foundation.
On that note, as a neo-classical composer, Paul Hindemith’s
modern contrapuntal approach to music analysis influenced
our design. Let us observe the critical points in Hindemith’s
work in relation to ours before we explain our evaluation of
his approach.

Hindemith explains his Series I as follows: “the tone an
octave higher stands in so close a relationship that one can
hardly maintain a distinction between the two. The tone
which is only a fifth higher than the given tone is the next
most closely related, and there follow in order the fourth,
the major sixth, the major third, the minor third, and so on
. . . ” (Hindemith 1945)

At this point, we make two assumptions. Firstly, we clas-
sified intervals as perfect, major, minor, augmented, and di-
minished, as in chordal harmony. Further, we used his opin-
ions on the correlation between the distance of the notes and
euphony. We will attempt to match the defined inputs with
our classification of intervals. And secondly, we neglected
the occurrence of any hierarchy between notes and assumed
that an interval that is built up is the same as one that is
built down. Despite our discrete classifications and defini-
tions so far, Hindemith underlines that “We know that no
point can be determined at which ‘consonance’ passes over
into ‘dissonance’” (Hindemith 1945). Our probabilistic ap-
proach helps us address this issue.

The algorithm’s probabilistic structure depends on the re-
lations between notes, called intervals. In total, there are 5
types of interval qualities which are categorized as follows:

• Minor interval → Minor Feeling → Low Winning Status
• Major interval → Major Feeling → High Winning Status
• Perfect Interval → Mild Feeling → Low Intensity
• Diminished Interval → Intense Feeling → High Intensity
• Augmented Interval → Intense Feeling → High Intensity

Another determinant in the algorithm is the distance be-
tween any two notes. For example, regardless of the qual-
ity of the intervals, if the two notes are next to each other,
e.g. ‘C’ and ‘D’, then there is tension in the harmony that
they would create, which is why they are called dissonant
intervals. Likewise, any two notes that have more than one
whole note between them would have a larger resonance,
thus would indicate lower intensity. Those are called conso-
nant intervals, with only one exception: the tritone, which is
the interval between two notes that are exactly 6 half notes
away from each other (e.g. ‘C’ and ‘F#’).

With that information at hand, notice that in a 12-note
octave, there are only a few possible ways to make up a
chord consisting of 3 notes. We will categorize any chord
that has at least one dissonant interval as “dissonant chords”,
and others as “consonant chords”. We later judge that conso-
nant/dissonant chords imply a high/low winning status and
low/high intensity, respectively.

Algorithm Initialization The algorithm is a combination
of deterministic and probabilistic decisions. At a given

instant of a note change, we have the information of two
remaining constant notes. First, we deduce the interval of
those two notes. Go to Rule-1 or Rule-2 if the interval is
dissonant or consonant, respectively.

Rule-1 With a probability of intensityx, the updated note
also creates a clashing sound with one of the other tracks,
resulting in a very high-intensity harmony. Otherwise,
follow Rule-3 if the winning status is less than 0.5 (los-
ing the game), and Rule-4 otherwise (winning the game).

Rule-2 With a probability of intensityx, the updated note
also creates a clashing sound with one of the other tracks,
resulting in a very high-intensity harmony. Otherwise,
follow Rule-5 with a probability of winning status, and
Rule-6 otherwise.

Rule-3 With a probability of winning status×2 (since win-
ning status is less than 0.5), the track is updated to form a
perfect interval with any of the other 2 tracks. Otherwise,
the track is updated to form a minor interval with any of
the other 2 tracks.

Rule-4 With a probability of (winning status − 0 .5 ) × 2
(since winning status is greater than 0.5), the track is up-
dated to form a major interval with any of the other 2
tracks. Otherwise, the track is updated to form a perfect
interval with any of the other 2 tracks.

Rule-5 Update the current track so that the 3 tracks form a
major chord. Note that this is always possible since the
2 remaining tracks form either a perfect interval or a mi-
nor/major interval.

Rule-6 Update the current track so that the 3 tracks form a
minor chord. Note that this is always possible since the
2 remaining tracks form either a perfect interval or a mi-
nor/major interval.

intensityx refers to the value that is deduced by taking
the intensity value to the power of any number x, and its
function is to provide occasional dissonances that later
musically resolve to create musical releases which help
create more complex music. With respect to the innate
intensity of the game, the value of x could be adjusted. For
a low-intensity game, it would be wise to take a high x
value to come across dissonances as rarely as possible. For
our experiments, we used x = 2.

Note that the algorithm eliminates the deterministic chord
progression system where winning the game indicates a se-
ries of major chords and vice versa. Instead, the frequencies
of major and minor chords were adjusted according to the
winning status so that the soundtrack consists of both major
and minor chords, as is common in music.

Comparison of the Music Algorithms
The Markov-chain-generated (MCG) musical structure has
the advantage of not needing a composer and the instrumen-
tation adaptive instrumentation volume (AIV) musical struc-
ture has the flexibility to be enriched by a human musician.
Both designs adapt the music to the gameplay though the
adaptation process is heavily dependent on the skills of a hu-
man musician for the AIV model. The MCG method could

16074



Figure 8: Example of the game Chaosman.

also be influenced by the sound designer by choosing differ-
ent x values for the power of intensity , but it is obviously
quite limited with respect to the AIV model.

We found listening to the AIV system more enjoyable due
to the involvement of a musician in the music’s creation.
Since the AIV design values human imagination in music,
it would be better suitable for story-based or linear games
while the MCG design would fit better with unending game
genres like high-score-based games since the continuity in
music is better expressed with the algorithm.

Experiment 2: Chaosman Overloaded
Chaosman Overloaded (Cheezesoft 2022) is a platformer
shooter game in which the player must race through a dun-
geon filled with dangerous enemies and traps in order to
reach a door that proceeds to the next level. To navigate
through the dungeon, the player has the options to jump, run
and shoot at the enemies. The most important aspect of this
game is the chaos meter because if the meter fills, the player
will lose a life. If the player touches an enemy, the meter
will fill up, and the meter also naturally increases as time
goes by. Luckily, there are a number of towers spread out in
each level that will decrease the player’s chaos meter if they
stand near it. The player has 3 lives, and there are a total of
3 levels in this game. If the player loses all 3 lives, they will
have to start over from the first level.

In the original game, there are unique features, e.g. con-
stantly changing colored-background and a very small bub-
ble of vision. However, these features are either irrelevant or
unfavorable to our experiment, so we had to do some modi-
fications for the game to suit the scope of our project better.

Experimental Design
For our second experiment, we chose a game in the plat-
former genre to contrast with our first experiment, a sports
video game. We did so to test our model on games with dif-
ferent types of variables to see how it would perform. With a
platformer type of game, not only do we have variables that
can indicate winning and intensity level similar to the previ-
ous games such as the score or the numbers of certain game
elements on screen, but we also have to take into account

Model RMSE
(Intensity)

RMSE
(Winning)

Baseline 0.578 0.377
Linear
Regression 0.200 0.177

Gradient
Boosting 0.261 0.161

Bayesian
Ridge 0.259 0.178

Random Forest
Regression 0.097 0.075

Lasso
(alpha=1) 0.235 0.192

Table 2: Chaosman Model Statistics

hard-to-define variables, e.g. distance to the goal, the num-
ber of enemies, their average position, etc. In Chaosman, the
variables that we sampled at 100 ms intervals were:

• Score (integer, range [0, 706])
• Number of lives (integer, range [0, 3])
• Chaos value (float, range [0.0, 100.0])
• Current level (integer, range [0, 2])
• Number of enemies within 80 pixel radius (integer, range
[0, 7])

• Number of bullets on screen (integer, range [0, 10])
• Number of player input events per 0.1 seconds averaged

over the last 1 second (float, range [0.0, 13.9])
• Distance from goal (pixels, range [7.0, 867.31])
• Distance from start (pixels, range [0, 1214.05])
• Elapsed time (ms, range [14.0, 37610.0])
• Position (whether at tower, 0(false), 1(true))

We collected over 209,000 merged input-output rows of
data from Chaosman, taken from over 4 hours of testing.
We collected more data from Chaosman than Bouncy Shots
because Chaosman is a larger game, though it can still be
completed in a couple minutes.

Again, our emotional outputs consisted of Intensity and
Winning Status values. The data collection process was the
same; only gameplay state features differed. After collec-
tion, we again normalized the data and created the ML mod-
els of our previous experiment to look for possible differ-
ences in performance.

Experimental Results
We considered the same regression models as with the
Bouncy Shots game, but for Chaosman our baseline values
used number of bullets for intensity prediction and distance
from goal for winning status prediction. Random forest re-
gression was also the best performing model (Table 2) with
RMSE values minimal for both intensity and winning.

Random forest regression was also used for lag and poly-
nomial degree optimization. For the lag test, the lowest
RMSE value was for 500 ms for the intensity output, but

16075



Degree 1 2 3 4
RMSE (Intensity) 0.0969 0.0979 0.0982 0.0982
RMSE (Winning) 0.0753 0.0756 0.0749 0.0754

Table 3: Chaosman Degree Statistics

Figure 9: Lagged RMSE values of Chaosman.

for 1000 ms for the winning output (Figure 9). In this sit-
uation, we chose to use 500 ms of lag, because we can see
that RMSE measures for intensity are greater than those of
winning status, so we chose the value where the less consis-
tent RMSE was best. We observe that this synchronization
value is different from the best value that was concluded in
experiment 1. Differences in synchronization shift are to be
expected because of significant differences in game genre
and time needed for human state evaluation. Bouncy shots
as a fast “twitch” game is relatively simple, allowing rapid
assessment. Chaosman as a platformer is more complex with
many features relevant to evaluation and requires more time
for human assessment of game state.

For the polynomial degree question, we can see that de-
gree 1 has the lowest RMSE value for intensity score, but
3 has the lowest RMSE for winning status (Figure 10). To
resolve this, we again note that the RMSE of intensity is
greater on the whole than that of winning status, so we again
chose to minimize the greater RMSE value and move for-
ward with a first-degree polynomial. Therefore, for games
similar to Chaosman Overloaded, we expect that a good
starting place would be to model a first-degree polynomial
with a lag of 500 ms.

Figure 10: RMSE values of Chaosman for different degrees.

Future Work
There are a few primary ways that we would like to ex-
tend this work. First, we could minimize state variables for
soundtrack loop efficiency. In these experiments, we chose
state variables that we strongly suspected were relevant, but
we would like this process to be general and lightweight.
Thus, if the work pipeline allowed for many state features
where an iterative process might minimize the number of
features, we could semi-automate the ML side of the pro-
cess. Iteratively applying regularization (e.g. lasso) or vari-
able selection techniques could provide feedback to the out-
put gameplay feature stage so as to craft a more efficient
soundtrack loop.

Another extension would be to explore the effectiveness
of our model in different types of games. In this paper we
have tested 2D video sports (Bouncy Shots) and 2D plat-
former (Chaosman) genres. Looking at other genres of game
(Horror, Offline FPS, RPG, Fighting, etc.) would provide
greater insight as to the best models and common state vari-
ables that have greater impact on emotional states. The in-
strumentation for different genres also differs: an intense
scene in a horror game should be scored differently than an
intense scene in a shooter. Exploration of more genres could
suggest extensions or generalizations for our process.

Thirdly, this paper practices a harmony-centered approach
to create dynamic, adaptive music. However, we have not
tapped the greater potentials of percussion. For example,
increasing or decreasing the tempo with respect to the in-
tensity level as well as varying percussion sections could
have a massive impact on the intensive feel of the sound-
track. Likewise, approaches introduced here could be imple-
mented in conjunction with a melody-centered sound gen-
eration algorithm, which could potentially provide samples
with greater musicality, i.e. have more recognizable musical
structure and melody.

One limitation of our Markovian music generation is our
assumption that all the notes played by the algorithm are
hierarchically equal. This would disappoint most musicians,
who are generally tonal and deliberate in the selection of
note patterns in musical context.

Conclusions
In this work, we have demonstrated methods for creating
an adaptive game soundtrack using machine learning (ML)
techniques to learn AI for emotional conducting of music.
Through our Player-Conductor ML approach, we were able
to collect data on a broad spectrum of game states in or-
der to create a more robust AI Conductor model. We then
merged timestamped data from the Player’s game state in-
puts and the Conductor’s emotional outputs. Testing multi-
ple supervised learning models on this data, we found that
random forest regression provided the lowest RMSE. Possi-
ble sources of error were noted and tested, such as a potential
gap between in-game events happening and the Conductor’s
reaction in recording their emotional state and the possibil-
ity of higher-degree polynomials being of better quality, and
we concluded that short lag times (250-500 ms) and a first-
degree polynomial yielded lowest RSMEs.

16076



References
Casella, P.; and Paiva, A. 2001. Magenta: An architecture for
real time automatic composition of background music. In
International Workshop on Intelligent Virtual Agents, 224–
232. Springer.
Cheezesoft. 2022. Chaosman Overloaded. https://cheezye.
itch.io/chaosman-overloaded. Accessed: 2022-07-1.
Collins, K. 2008. Compositional Approaches to Dynamic
Game Music. In Game Sound: An Introduction to the His-
tory, Theory, and Practice of Video Game Music and Sound
Design, chapter 8. The MIT Press. ISBN 9780262270694.
DaFluffyPotato. 2022. Bouncy Shots. https://dafluffypotato.
itch.io/bouncy-shots. Accessed: 2022-08-29.
Escarce Junior, M.; Rossmann Martins, G.; Soriano Marcol-
ino, L.; and Tavares dos Passos, Y. 2021. Emerging Sounds
Through Implicit Cooperation: A Novel Model for Dynamic
Music Generation. Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment,
13(1): 186–192.
Hindemith, P. 1945. The Craft of Musical Composition:
Book 1: Theory. Associated Music Publishers, Inc. ISBN
0901938300, 9780901938305.
Léo, S. 2020. The Effect of Dynamic Music in Video Games:
An Overview of Current Research. Bachelor’s thesis, Upp-
sala University.
Plut, C.; and Pasquier, P. 2020. Generative music in video
games: State of the art, challenges, and prospects. Entertain-
ment Computing, 33: 100337.
Rayman, J. 2014. Experimental Approaches to the Compo-
sition of Interactive Video Game Music. Ph.D. thesis, Uni-
versity of East Anglia.
Redhead, T. 2018. The Emerging Role of the Dynamic Mu-
sic Producer. In Australasian Computer Music Conference
2018: Reflecting Worlds: The Promise and Limitations of
Mimesis in Electronic Music. Edith Cowan University.
scikit-learn.org. 2022. sklearn.preprocessing.MinMaxScaler.
https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.MinMaxScaler.html. Accessed: 2022-08-29.
Yilmaz, V. G. 2022. VideoGameMusicGenerator. https:
//github.com/GoyaReceli/VideoGameMusicGenerator. Ac-
cessed: 2022-12-12.

16077


