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Abstract

In this paper, we describe curricular materials that use the
game of Clue to teach basic concepts of propositional logic.
While there are many ways of teaching concepts of logic, this
approach is distinct in that it is (1) goal-oriented, culminating
in a fun project where students implement expert Clue de-
duction, (2) minimalistic, covering many important concepts
within the simple domain of propositional logic, and (3) ex-
tensible, inviting students to extend the project further in sev-
eral significant directions through advanced study of knowl-
edge representation and reasoning topics.

Introduction

This paper presents curricular materials for teaching knowl-
edge representation and reasoning in an introductory arti-
ficial intelligence course. The project, “Clue Deduction:
an introduction to satisfiability reasoning”, is part of a
larger project Machine Learning Laboratory Experiences
for Introducing Undergraduates to Artificial Intelligence
(MLEXAI)'. An overview of this NSF-funded work and sam-
ples of other course materials developed under this grant are
published in (Russell et al. 2005; Markov et al. 2005).

There are many ways to teach knowledge representation
and reasoning (KR&R). The approach we describe here has
a number of distinguishing features. First, it is goal di-
rected, with the goal being to develop expert artificial intel-
ligence for reasoning about the popular board game Clue®?,
a mystery-themed game of deduction. By featuring one
of the last half-century’s most popular board games in the
world, we have chosen a goal that is both fun and accessible.
Further, we have chosen to deal exclusively with proposi-
tional logic only, covering most core KR&R concepts with-
out first-order logic complexities. Drawing from both Al
texts and mathematics journals, we offer a high-quality se-
lection of word problems for propositional logic. Finally, the
core student project is extensible in several important ways,
creating incentives for further exploration in constraint sat-
isfaction and boolean satisfiability reasoning engines.

In the remainder of this paper, we describe the structure
of our curricular materials at a high level, and present our
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Figure 1: The Game of Clue

preliminary teaching experiences using them. Handouts and
supporting software are available at the project website>.

The Game of Clue

In this section we describe the game of Clue and explain why
it is well-suited to the teaching and application of proposi-
tional logic.

The murder-mystery themed board game of Clue was in-
vented by Anthony E. Pratt and first produced in the U.K.
by Waddingtons as “Cluedo” in 1949. Since that time, Clue
became one of the most popular family board games of the
last half century.

In the back-story of the game, Mr. Boddy has been mur-
dered in one of the rooms of his mansion Tudor Close. The
game’s object is to be the first to correctly deduce the cor-
rect murder suspect, weapon, and room. Three to six players
arbitrarily assume roles of possible suspects, but a player’s
guilt or innocence does not affect play.

A deck of 21 cards depicts each of six possible suspects,
six possible weapons, and nine possible rooms. One of each
of these three card types is randomly chosen and placed,
unseen by any player, into an envelope called the case file.

*http://uhaweb.hartford.edu/compsci/ccli/Clue/



These three cards are the unknown murder suspect, weapon,
and room for this game. The remaining 18 cards are then
shuffled and dealt clockwise to players. (In a four- or five-
player game, cards will not be dealt evenly.)

Each turn, a player rolls dice to move about the board,
visiting rooms and making suggestions about the contents of
the case file. When a player makes a suggestion, opponents
clockwise indicate that they cannot disprove the suggestion
until an opponent has one or more of the suggested cards and
must reveal one privately to the suggester. Each player may
declare one accusation in the game, checking the case file to
see if the contents have been correctly named. If correct, the
player wins; if not, the player loses and continues to disprove
suggestions when possible.

Thus, Clue is primarily a game of information, and suc-
cessful players are skilled at gaining more information than
their opponents, using it to deduce or guess further informa-
tion. Atomic sentences for our propositional reasoning are
of the form “Card c is in place p,” denoted cp.

Students often share fond memories of playing Clue as
children. Indeed, Clue is often considered a simple chil-
dren’s game. This is perhaps due to the fact that the game’s
detective notepads are too small to make substantial notes,
and instructions for use of detective notepads merely encour-
age the player to simply mark the cards the player has seen.
However, most information available in the game concerns
cards not seen. It is important to note what is not held by
an opponent, or that one of three suggested cards was shown
by one opponent to another. In our experiences, few Clue
players make such notes or appreciate the logic puzzles each
game presents.

Applying logical reasoning to all basic propositional in-
formation in the game allows a player to make surprising
expert deductions, reaching a winning accusation in a frac-
tion of the time of a novice. More than a children’s game,
Clue is revealed as game of deeper deduction. Between nos-
talgia and mastery of a popular game, students enjoy a pos-
itive, fun experience as they learn fundamental concepts of
logic.

Propositional Logic

Our curricular materials begin with a concise presentation
of the syntax and semantics of propositional logic. Exam-
ples are based on facts in the game of Clue and a simple
liars/truth-tellers problem. A central running example in the
introduction, conjunctive normal form, and resolution theo-
rem proving is as follows:

Example Problem: Suppose that liars always speak
what is false, and truth-tellers always speak what is
true. Further suppose that Amy, Bob, and Cal are each
either a liar or truth-teller. Amy says, “Bob is a liar.”
Bob says, “Cal is a liar.” Cal says, “Amy and Bob are
liars.” Which, if any, of these people are truth-tellers?

Using Clue facts and this problem, we cover atomic sen-
tences, operators (—, A, V, =, <), literals, propositional
logic’s BNF grammar, truth assignments, (un)satisfiability,
models, validity, tautologies, entailment, and logical equiva-
lence. Step by step, we show that the knowledge base of the

example problem above can be expressed as:
{A& -B, B& -C, C < —-AN-B}
where the atomic sentences have the following interpreta-
tion:
e A - Amy is a truth-teller.
e B - Bob is a truth-teller.
e (- Calis a truth-teller.

Conjunctive Normal Form (CNF)
In order to teach resolution theorem proving and understand
the most common interface to propositional logic automated
theorem provers, we demonstrate conversion to conjunctive
normal form (CNF) using the liars/truth-tellers knowledge
base:

1. Eliminate <. Replace each occurrence of s; < sy with
the equivalent (s; = s2) A (s2 = s1).

A=-B, -B= A, B=-C, -C = B,

2. Eliminate =-. Replace each occurrence of s; = so with
the equivalent —s; V s9.

—-AV-B, -~BVA, -BVv-C, ——CV B,
-CV-AN-B, 2«(wAAN-B)VC

3. Move — inward. We demonstrate de Morgan’s law and
double — elimination.

~AV =B, BVA, ~BV-C, CV B,
~CV—-AN-B, AVBVC

4. Distribute V over A.

~AV-B, BVA, -BV-C, CV B,
~C'V =A, ~CV-B, AVBVC

Expressed as a set of sets of literals:

{ﬁAﬂ _'B}v {B,A}, {—'B,—'C}, {073}7
{ {~C,—A}, {~C, =B}, {A,B,C) }

Resolution Theorem Proving

This then sets the stage for teaching resolution theorem
proving. We describe reductio ad absurdum, i.e. proof by
contradiction, and generalized modus ponens. We then take
our example knowledge base and show how to prove that
Cal is a liar by assuming he is a truth-teller and deriving a
contradiction through resolution:

(h) {-A,-B} Knowledge base
) {B,A}
(3) {ﬁBa ﬁCf}
“ {C, B}
(5) {-C,-A}
(6) {ﬁC7 ﬁB}
(1 {A,B,C}
®) {C} Assumed negation
9 {-A} (5),(8)  Derived clauses
(10) {B} 2,9
a1 {-C} (3),(10)
12y {} (8),(11)  Contradiction!




SATSolver, DIMACS CNF Format, and zChaff

Our project is structured in such a way that students may
do as little as represent knowledge, and may go so far as
to implement the entire reasoning system. We make use of
zChaff*, a free, efficient, complete, DPLL-style satisfiabil-
ity solver (Moskewicz et al. 2001). Any solver may be used
that accepts the standard DIMACS CNF format and reports
whether the given knowledge base is satisfiable or not. We
thus treat the underlying satisfiability reasoning engine as a
black box which students may choose to implement for an
even richer educational experience. Indeed, students work-
ing on this project at Gettysburg College implemented Walk-
SAT to replace zChaff as their satisfiability reasoning black
box.

The instructor may choose leave the solver as an abstract
black box, or delve into the chosen solver’s algorithm. This
project is intended as a flexible, customizable starting point
that is minimally a knowledge acquisition and representa-
tion exercise, but could also motivate a deeper inquiry into
reasoning algorithms.

We give a detailed description of SATSolver, a Java
interface to zChaff, using Donald Knuth’s literate program-
ming® style. Using the tool noweb® we created a single
source document in which code is defined in modular chunks
throughout the body of the teaching materials. This source
is used both to create the typeset project documentation,
and to extract and assemble the corresponding source code.
Whereas traditional commenting intersperses text through-
out code, literate programming intersperses code throughout
text, and gives the reader assurance that the code described
and supplied is the same.

The complete implementation of the SATSolver is thus
presented piece by piece, so that the user can make any
changes necessary should a solver other than zChaff be de-
sired. In the “Related Work™ section, we discuss the trade-
offs of applying Prolog to Clue.

Propositional Logic Exercises

At this point, students are prepared to exercise knowledge
representation, resolution theorem proving, and automated
theorem proving through the SATSolver. Drawing from
a diverse set of artificial intelligence texts, logic texts, and
mathematics journals, we selected and adapted eight excel-
lent problems in propositional reasoning. Students are asked
to approach each problem in four parts:

(a) Express all relevant problem facts as a propositional logic
knowledge base. Clearly explain the meaning of the
propositional symbols.

(b) Convert the propositional logic knowledge base to CNF.

(c) Use resolution theorem proving to solve the problem.

(d) Solve the problem computationally with a SAT solver.
*http://www.princeton.edu/%7Echaff/zchaff.htm]
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A student successfully completing a few of these exer-
cises should have a firm grasp of the main concepts up to
this point.

Clue Reasoner

Given the SATSolver and exercises in knowledge represen-
tation and conversion to CNF, we are now ready to create
an expert Clue reasoner. A skeleton class ClueReasoner
is supplied which contains all but knowledge needed for the
knowledge base, so this is essentially a knowledge acquisi-
tion and representation exercise.

We mentioned earlier that each Clue atomic sentence cp
symbolizes the statement “The card c is in place p.”. There
is an atomic sentence for each place and card pair. For
DIMACS CNF format, we provide a unique integer, i.e. a
Godel number’, for each atomic sentence as follows. Sup-
pose we have a place index ¢, and a card index ¢.. Then the
integer corresponding to ¢p is 7, X numCards+i.+1. Since
ic € [0,numCards — 1] and i, € [0,numPlayers] (in-
cluding the case file), then each atomic sentence has a unique
number from 1 through (numPlayers+ 1) x numCards.

For example, consider the atomic sentence piyyp. The
player Mrs. White (“wh”) has index 2. The lead pipe
card (“pi”) has index 10. There are 21 cards. There-
fore, the integer corresponding to the atomic sentence cp is
2x21+10+1 =53

The knowledge of Clue can be divided into two types:
initial knowledge and play knowledge. Initial knowledge is
that which is known right before the first turn and includes:

e Each card is in exactly one location.
e Exactly one card of each category is in the case file.
e You know your hand of cards.

Play knowledge is knowledge gained during events of the
game:

e A player cannot refute a suggestion.
e A player refutes your suggestion by showing you a card.

e A player refutes another player’s suggestion by showing
them a card privately.

e A player makes an accusation and shares whether or not
it was correct.

Whether initial or play knowledge, it is added immedi-
ately clause by clause to the knowledge base. Satisfiability
testing is done with the knowledge base and each possible
literal in turn in order to determine where cards are, are not,
or possibly may be located. The results are printed in a table.

Students at Gettysburg College were the first to be as-
signed this project. To our surprise, the reasoning perfor-
mance of the ClueReasoner was beyond that of the “ex-
pert” computer players of Atari’s commercial product Clue:
Murder at Boddy Mansion. In one game, several turns be-
fore an expert computer player was able to make a cor-
rect accusation, the assigned project system was able to de-
duce the contents of the case file given only the information
known to a non-playing observer who never sees any cards.

"http://en.wikipedia.org/wiki/G%C3%B6del_number



Students should be encouraged by the fact that they can
both comprehend and implement a state-of-the-art reasoning
system.

Improving Performance

Until now, no effort was made (programmatically or on pa-
per) to delete unnecessary clauses from the knowledge base.
After completion of the project, we describe three simple
types of unnecessary clauses that are often eliminated in
the preprocessing stage of a reasoning engine: equivalent
clauses, subsumed clauses, and tautology clauses. (We do
not cover pure literal elimination, but supply references for
further reading.) Examples are given from our liar/truth-
teller example.

We also use the liar/truth-teller example to concretely
show how the results of deduction may be added to a
knowledge base, subsuming prior knowledge, streamlining
the knowledge base, and improving reasoning performance.
Thus, we naturally lead into a discussion of deductive learn-
ing.

Machine learning is the unifying theme for this set of in-
troductory Al projects developed for the NSF. In his text Ma-
chine Learning (Mitchell 1997), Tom Mitchell defines ma-
chine learning as follows:

A computer is said to learn from experience E with
respect to some class of tasks 7" and performance mea-
sure P, if its performance at tasks in 7', as measured by
P, improves with experience E.

Having shown deductive learning to improve average ex-
pected performance of the reasoning task, we contrast de-
ductive learning with inductive learning and discuss their in-
verse relation. Finally, we point out that our system is “told”
facts, and that knowledge acquisition is a third important ex-
perience for augmenting and improving a knowledge-based
system.

Advanced Projects

For students who have completed this project, we provide
brief descriptions of three possible directions students can
proceed for advanced work.

First, we point out the fact that all previous reasoning
omits important initial knowledge: the number of cards dealt
to each player. This is common knowledge, and can be very
important in practice. For example, suppose six players are
playing with three cards each. You have been shown one of
a player’s cards, and have deduced 18 cards that the player
does not have. This leaves two unknowns out of 21 cards.
However, since the player holds three cards and you know
18 cards which are not held by the player, then all remaining
cards must be held by the player. If you know all the cards
a player does not have, you know all the cards a player does
have, and vice versa.

There are a number of ways a student can represent this
information about the number of cards dealt to each player.
A first approach is to represent it in CNF, either in a sim-
ple combinatorially large form, or a compact adder-circuit
form. A second approach is to perform such reasoning at a
meta-level, repeatedly performing all other deductions until

the meta-level can deduce nothing more. A third approach
is to operate directly with pseudo-boolean constraints as a
constraint satisfaction problem. Indeed, this would provide
a good segue to the topic of constraint satisfaction.

A second possible advanced project would be to replace
zChaff with the student’s own simple DPLL-type solver.
Whereas the project thus far has been largely concerned with
knowledge representation, an implementation of the under-
lying reasoning engine would be an excellent educational
experience as well.

Similarly, as a third possible advanced project, a student
might opt to experiment with the implementation of a sim-
ple stochastic local search (SLS) based reasoning engine
(e.g. WalkSAT). This was the direction taken at Gettysburg
College. The practical application of incomplete WalkSAT
search to Clue reasoning gave students a feel for the tradeoff
of speed versus quality of the reasoning result. The more
iterations WalkSAT is given, the more likely the algorithm
will find satisfying truth assignments when they exist, an-
swering knowledge base queries correctly.

Assessment

This project was first assigned to Gettysburg College stu-
dents in the fall of 2004. Projects were tested with a sim-
ulated game scenario unknown to the students. Of eleven
projects, five had complete and correct deductions. Most
other projects were missing one type of fact. For example, in
adding a player’s hand information to the knowledge base, a
few students failed to add what cards were not in the player’s
hand.

Five students were independently interviewed and sur-
veyed by an external evaluator for the NSF. Results were
very positive. On a 1-5 scale (“strongly disagree”, “disagree
somewhat”, “neither agree nor disagree”, “agree some-
what”, “strongly agree”), students responded to the ques-
tions of Figure 2.

Although this sample size is very small, the preliminary
results of Figure 2 are encouraging. The curricular materials
were revised according to recommendations by student par-
ticipants and reviewing faculty. Additional broader assess-
ment of the revised materials is forthcoming as the revised
materials are currently being tested across a diverse set of
institutions.

Related Work

Prolog implementations of simple Clue reasoning systems
are described in (Neufeld 2002) and (Emond & Paulissen
1986). A detailed implementation is described in (Emond &
Paulissen 1986), highlighting the strengths and weaknesses
of working with Prolog. Perhaps the greatest strength is that
Prolog as a declarative logic programming language is well-
suited to such knowledge representation and reasoning pro-
gramming tasks.

However, two representational weaknesses in the imple-
mentation were highlighted by the authors. First, a lack
of loop detection necessitates the creation of unintuitive,
separate has and owns predicates which force acyclic
search. That is, awkward necessary procedural “hacks”



Question Mean
Requirements for the student project were 4.6
clearly presented and easy to follow.
The time allowed for the completion of the 5.0
project was sufficient.
The student project was interesting to work on. 4.2
The student project contributed to my overall 4.4
understanding of the material in the course.
The student project was at an appropriate level 4.6
of difficulty given my knowledge of computer
science and programming.

After taking this course I feel that I have a good 4.4
understanding of the fundamental concepts in
Artificial Intelligence.

Based on my experience with this course, I | 4.2
would like to learn more about the field of Ar-
tificial Intelligence.

The Artificial Intelligence problem solving 4.8
techniques covered in this course are valuable.
I'have a firm grasp of the problem solving tech- 4.4
niques covered in this course.
I am confident that I can identify opportunities 4.2
to apply these problem solving techniques.
I am confident that I can apply these problem 4.2
solving techniques to different problems.
I had a positive learning experience in this 4.8
course.

Figure 2: Preliminary assessment

were necessary for successful search. Second, the re-
striction to Horn clauses necessitated predicates such as
has_at_least_one_of_three.

Prolog would certainly lend itself to a more compact rep-
resentation. However, assuming the students are do not al-
ready know Prolog, instructors should carefully weigh the
cost of teaching a new programming language in the context
of an Al course.

NSF Project

This Clue project is one of several projects developed for
Machine Learning Laboratory Experiences for Introducing
Undergraduates to Artificial Intelligence (MLEXAI), a joint
effort between the University of Hartford, Central Connecti-
cut State University, and Gettysburg College. Instructors
can access projects like this Clue project through the project
website®.

The importance of Al in the undergraduate computer sci-
ence curriculum is illustrated by the Computing Curricula
2001 recommendation of ten core units in Al (Engel &
Roberts 2001; Russell & Neller 2003). It is generally recog-
nized that an undergraduate introductory Al course is chal-
lenging to teach (Hearst 1995). This is, in part, due to the
diverse and seemingly disconnected core topics that are typ-
ically covered. Recently, work has been done to address
the diversity of topics covered in the course and to create

8http://uhaweb.hartford.edu/compsci/ccli/

a theme-based approach. Several faculty have been work-
ing to integrate Robotics into the Al course (Kumar 2001;
Kumar & Meeden 1998). Russell and Norvig use an agent-
centered approach (Russell & Norvig 2003), while Nilsson
uses an evolutionary-based approach (Nilsson 1998).

In MLEXAI, we have created an adaptable framework for
the presentation of core Al topics through a unifying theme
of machine learning. A suite of hands-on projects have
been developed, each involving the design, implementation,
and/or use of an applied learning system.

Our work will undoubtedly draw comparison to the in-
troductory text by Nils Nilsson, Artificial Intelligence: a
New Synthesis, which takes an evolutionary, agent-based ap-
proach to topic unification with a heavy emphasis on ma-
chine learning (Nilsson 1998). The text is geared toward
a student with significant prior coursework in mathematics.
Being mathematically focused, the text places almost no em-
phasis on application of ideas through implementation. In-
deed, the preface states, “Although some pseudocode algo-
rithms are presented, this book is not an Al programming
and implementation book.”

In contrast, our experiential approach, as exemplified by
this Clue project, allows for varying levels of mathemati-
cal sophistication with the implementation of concepts being
central to the learning process.

Conclusion

Creating a state-of-the-art reasoning engine for one of the
world’s most popular (and least analyzed) board games is
truly a unique and rewarding experience. Moreover, the abil-
ity to accomplish this in the context of an introductory Al
course while teaching core concepts of knowledge represen-
tation and reasoning (KR&R) is both rewarding and encour-
aging.

While first-order logic has its place in Al education, we
believe that a student’s first exposure to KR&R concepts
should be in the simple context of propositional logic. With
an increasing trend towards translating planning and con-
straint satisfaction problems to boolean satisfiability prob-
lems(Kautz & Selman 1996; Gent 2002), this approach also
provides students with immediate practical tools to encour-
age application and further learning. Our minimalism is
also motivated by the fact that introductory Al courses often
present a diverse set of topics within tight time constraints.

Finally, we note that the Clue project ends at a cross-
roads. Students are invited to pursue further elaboration
of the project into a variety of reasoning engines, including
more general constraint satisfaction search. The extensibil-
ity of this project lends itself to a variety of instructional
purposes.

Instructors are encouraged to visit the Clue project web-
site’, and explore other experiential teaching materials for
introductory Al at the MLEXAI project page'°.

*http://cs.gettysburg.edu/%7Etneller/nsf/clue/index.htm]
"%http://uhaweb.hartford.edu/compsci/ccli/



Acknowledgment

This work is supported in part by National Science Founda-
tion grant DUE CCLI-A &I Award Number 0409497 .

References

Emond, J.-C., and Paulissen, A. 1986. The art of de-
duction: a simple program that demonstrates the deductive
power of prolog. Byte 11:207-214.

Engel, G., and Roberts, E., eds. 2001. Computing Cur-
ricula 2001 Computer Science. 1EEE Press. Available at
http://www.sigcse.org/cc2001/.

Gent, I. P. 2002. Arc consistency in SAT. In van Harme-
len, F., ed., Proceedings of the 15th Eureopean Conference
on Artificial Intelligence, ECAI’2002, Lyon, France, July
2002. 10S Press.

Hearst, M., ed. 1995. Improving Instruction of Artificial
Intelligence: Papers from the 1994 AAAI Fall Symposium.
AAAI Press.

Kautz, H., and Selman, B. 1996. Pushing the enve-
lope: Planning, propositional logic, and stochastic search.
In Proceedings of the Thirteenth National Conference on
Artificial Intelligence (AAAI-96) and The Eighth Annual
Conference on Innovative Applications of Artificial Intel-
ligence, August 4-8, 1996, Portland, Oregon. AAAI Press.

Kumar, D., and Meeden, L. 1998. A robot laboratory for
teaching artificial intelligence. In Proceedings of the 29th
SIGCSE technical symposium on computer science educa-
tion, 341-344.

Kumar, A. N. 2001. Using robotics in an undergradu-
ate artificial intelligence course: An experience report. In
Proceedings of the 31st ASEE/IEEE Frontiers in Education
Conference, October 10-13, 2001, Reno, NV, 10-14. Ses-
sion T4D.

Markov, Z.; Russell, I.; Neller, T.; and Coleman, S.
2005. Enhancing undergraduate ai courses through ma-
chine learning projects. In Proceedings of the 35th
ASEE/IEEE Frontiers in Education Conference (FIE’05),
Indianapolis, IN. IEEE Press.

Mitchell, T. M. 1997. Machine Learning. New York, New
York, USA: McGraw-Hill.

Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient sat solver.
In Proceedings of the 39th Design Automation Conference
(DAC 2001).

Neufeld, E. 2002. Clue as a testbed for automated theo-
rem proving. In Cohen, R., and Spencer, B., eds., Lecture
Notes in Computer Science 2338: Advances in Artificial
Intelligence: 15th Conference of the Canadian Society for
Computational Studies of Intelligence, AI 2002, Calgary,
Canada, May 27-29, 2002. Proceedings. Berlin: Springer.
69-78.

Nilsson, N. 1998. Artificial Intelligence: A New Synthesis.
Morgan Kaufmann.

Russell, 1., and Neller, T. 2003. Implementing the in-
telligent systems knowledge units of computing curricula

2001. In Proceedings of Frontiers in Education Confer-
ence (FIE 03), Boulder, Colorado, November 5-8, 2003.
IEEE Press.

Russell, S., and Norvig, P. 2003. Artificial Intelligence: a
modern approach, 2nd ed. Upper Saddle River, NJ, USA:
Prentice Hall.

Russell, I.; Markov, Z.; Neller, T.; Georgiopoulos, M.; and
Coleman, S. 2005. Unifying an introduction to artificial in-
telligence course through machine learning laboratory ex-
periences. In Proceedings of the 25th American Society for
Engineering Education Annual Conference and Exposition
(ASEE’05). ASEE Press.



