
Rook Jumping Maze Generation for AI Education

Todd W. Neller
Gettysburg College

Department of Computer Science
Gettysburg, PA 17325

tneller@gettysburg.edu

Abstract

Rook Jumping Maze design provides a number of good op-
portunities for experiential learning of AI concepts, including
uninformed search, stochastic local search, machine learning,
and objective/utility function design. In this paper we will de-
fine the maze and present a collection of exercises that allow
exploration of several AI topics in the context of an engaging,
fun, and unifying task.

Rook Jumping Mazes

Definitions

Figure 1 provides an example of a Rook Jumping Maze.1
Let rmax and cmax be the number of rows and columns,
respectively. In this case, rmax = cmax = 5. A state s
of the maze (i.e. current location) is denoted by the row-
column coordinate (r, c), where r ∈ {1, . . . , rmax} and
c ∈ {1, . . . , cmax}. For example, a maze puzzler located at
(1, 1) is located in the upper-left corner cell of the grid. The
set of all states is denoted S. Let functions row : S → N and
col : S → N map a state to its row and column, respectively.

The circled starting state of this example maze, denoted
sstart, is (1, 1). The goal state of this example maze, denoted
sgoal and marked with a “G”, is (2, 4).

Each state of the maze has an associated jump number that
provides the exact number of cells one may move horizon-
tally or vertically in a straight line to change states. In Fig-
ure 1, the first move from (1, 1) may either be 3 cells right
to (1, 4), or 3 cells down to (4, 1). From (4, 1), there is only
one legal forced move 4 cells right to (4, 5). From (4, 5), one
may move 3 cells left to (4, 2) or 3 cells up to (1, 5). A jump
must be in a single orthogonal direction, and may neither
stop short of the number of required cells at edges, nor may
it wrap around edges toroidally (see Project Variations).

Let jump function j : S → N map a state to its jump
number. Define j(sgoal) = 0. Let the successor function
σ : S → 2S map a state to its possible successor states, that

Copyright c© 2011, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1Minimum 13-move solution for Figure 1: down, right, left, up,
down, left, right, up, left, left, right, down, up

3 4 1 3 1
3 3 3 G 2
3 1 2 2 3
4 2 3 3 3
4 1 4 3 2

Figure 1: Example Rook Jumping Maze. Starting at the cir-
cled cell, each jump number indicates the exact number of
cells one may move in a straight line horizontally or verti-
cally. The object is to find a path to the goal marked “G”.

is:

σ(s) =

s′ ∈ S

∣∣∣∣∣∣∣
s′ = (row(s) + j(s), col(s)), or
s′ = (row(s)− j(s), col(s)), or
s′ = (row(s), col(s) + j(s)), or
s′ = (row(s), col(s)− j(s))


Let the predecessor function π : S → 2S map a state to

its possible predecessor states, that is:

π(s) = {s′ ∈ S|s ∈ σ(s′)}
Define a path of length n from sfrom to sto as a sequence

of states (s1, s2, . . . , sn) such that s1 = sfrom, sn = sto,
and for all 1 ≤ i < n, si+1 ∈ σ(si). The optimal or shortest
solution path is a path of minimal length from sstart to sgoal.
Let |p| denote the length of path p. Let Psfrom,sto be the set
of all paths from sfrom to sto. Then an optimal solution path
p∗ is arg minp∈Psstart,sgoal

|p|.

Origin
The origin of Rook Jumping Mazes is unknown, but some
attribute its creation to the great puzzle innovator Sam Loyd.
Loyd’s 1898 Queen Jumping Maze, which additionally al-
lows diagonal moves, is shown in Figure 2. It appears on
page 106 of the Cyclopedia of Puzzles (Loyd 1914), a col-
lection of Loyd’s work compiled by his son.2

2Public domain scans available from
http://www.mathpuzzle.com/loyd/

Figure 2: Loyd’s puzzle “Back from the Klondike”

The puzzler is directed to a heart-marked start location at
the center of a gridded circle. The object is to find a path to
a cell from which one can jump one cell beyond the circle’s
edge. Loyd writes that the puzzle “. . . was built purposely
to defeat Euler’s [working backwards] rule and out of many
attempts is probably the only one which thwarts his method.”

Rook Jumping Maze Generation Assignments
The process of generating Rook Jumping Mazes (RJMs) of-
fers a number of introductory AI teaching opportunities with
regards to state representation, uninformed search, stochas-
tic local search, machine learning, and objective function
design.

Like programming contest problems, each assignment
presents a problem description and an input/output speci-
fication independent of programming language. Some as-
signments require other assignments as prerequisites, and
dependencies are clearly described in a table on the RJM
Generation home page3. Further, a variety of tracks through
the dependencies (e.g. Basic, Machine Learning) are sug-
gested for various pedagogical purposes. The basic track
can be completed in about 100 lines of Java code, and all
exercises can be completed in about two weeks. Relevant
online resources and text readings are also suggested.

Representation and Breadth-First Search
We begin by having students first represent a RJM and then
find an optimal solution minimizing the number of jumps.
The latter exercise provides an opportunity to implement and
apply breadth-first search.

3http://modelai.gettysburg.edu/2010/rjmaze/

Maze Representation: Generate and print a random n-
by-n RJM (5 ≤ n ≤ 10) where there is a legal move (jump)
from each non-goal state.
Input: an integer 5 ≤ n ≤ 10
Output: Initially prompt the user with “Rook Jumping
Maze size (5-10)? ”. Given valid input, print the randomly
generated RJM 2D-array of jump numbers, with jump num-
bers separated by a single space.

Maze Evaluation: Generate and print a random 5-by-5
RJM where there is a legal move (jump) from each non-goal
state. Then, for each cell, compute and print the minimum
number of moves needed to reach that cell from the start
cell, or “- -” if no path exists from the start cell, i.e. the cell
is unreachable.

First, generate and print a random 5-by-5 RJM according
to the Maze Representation specification.

There are many features of a good RJM. One obvious fea-
ture is that the maze has a solution, i.e. one can reach the
goal from the start. One simple measure of maze quality is
the minimum number of moves from the start to the goal.
For simplicity, we will limit our attention to these, although
consideration of other features is an interesting exercise (see
Maze Evaluation II).

Using breadth-first search, or some other suitable graph
algorithm, compute the minimum distance (i.e. depth, num-
ber of moves) to each cell from the start cell. Create an
objective function (a.k.a. energy function) that returns the
negated distance from start to goal, or a large positive num-
ber (e.g. 1,000,000) if no path from start to goal exists. Then
the task of maze generation can be reformulated as a search
through changes in the maze configuration so as to minimize
this objective function.
Input: (no input)
Output:
• Print a randomly generated 5-by-5 RJM 2D-array of jump

numbers, with jump numbers separated by a single space.

• Print a blank line.

• Print “Moves from start:” on a single line.

• Print the 2D-array of corresponding cell depths (i.e. mini-
mum moves from start) separated by spaces. For unreach-
able cells, print “- -”. For other cells, print the depth right-
justified in a width of two characters. Print a blank line.

• Print the output of your objective function on a single line.

Since uninformed search topics are sometimes taught in
the context of graph algorithms in a Data Structures (CS2)
course, these first exercises can be useful in that context as
well. We would suggest, however, the alternative goal of
solving an interesting given RJM rather than a random RJM.
A related programming contest problem specification and a
source of daily RJMs are available online4.

Stochastic Local Search
Having represented the RJM and applied breadth-first search
to the computation of the shortest solution path (or the fact

4http://tinyurl.com/rjmaze

no such path exists), we can now easily apply stochastic lo-
cal search (Hoos & Stützle 2005) to the task of generating
“better” mazes. Our simple objective function defines “bet-
ter” as having a solution and preferring a longer shortest so-
lution path. Without loss of generality, our stochastic local
searches will minimize this function.

It is important to stress the difference between a state in
maze solving (i.e. a maze cell) and a state in maze genera-
tion (i.e. an entire maze configuration). With stochastic local
search, we search the space of possible maze configurations
or designs for the best one according to our objective func-
tion measure.

Hill Descent: Using a form of stochastic local search
called Hill Descent, search the space of 5-by-5 RJMs for a
given number of iterations and print the best maze evaluated
according to the objective function in the Maze Evaluation
specification.

Given a number of iterations from the user, first generate
a random 5-by-5 RJM according to the Maze Representation
specification and evaluate it according to the Maze Evalua-
tion specification. Then for the given number of iterations:

• For a random, non-goal cell, change the jump number to
a different, random, legal jump number.

• Re-evaluate the objective function according to the Maze
Evaluation specification.

• If the objective function has not increased (worsened), ac-
cept the change and store the RJM if its evaluation is the
best (minimum) evaluated so far. Otherwise, reject the
change and revert the cell to its previous jump number.

Finally, print the RJM with the best (minimum) objective
function evaluation according to the Maze Evaluation output
specification.

More formally, let jump function j be a mapping from
cells to legal jump numbers, or 0 in the case of the goal
cell. Let objective function (or energy function) e be a func-
tion we seek to minimize over jump functions. Let step
be a function that takes a jump function j, and generates a
“neighboring” jump function j′ by making a single, stochas-
tic change: function step chooses from non-goal cells with
equal probability, and for that cell c chooses j′(c) from all
legal jump numbers not equal to j(c) with equal probability.
For all other cells, j′(c) = j(c). Then we may describe our
algorithm as follows:

Let j be chosen at random, and jbest ← j.
For a given number of iterations:

j′ ← step(j)
if e(j′) ≤ e(j)

j ← j′

if e(j) ≤ e(jbest)
jbest ← j

return jbest

Input: a positive integer number of iterations for hill de-
scent optimization
Output:
• Initially prompt the user with “Iterations? ”.

• After the hill descent iterations, print the RJM with the
best (minimum) objective function evaluation according
to the Maze Evaluation output specification.

Hill Descent with Random Restarts: Using a form of
stochastic local search called Hill Descent with Random
Restarts, search the space of 5-by-5 RJMs for a given num-
ber of iterations and print the best maze evaluated according
to the objective function in the Maze Evaluation specifica-
tion.

One problem with pure hill descent is that stochastic local
search may become trapped in local minima, where every
local step is uphill, making things worse. One escape strat-
egy is to restart search periodically. Another way of viewing
this is that we iteratively perform pure hill descent, starting
each descent at a random state. The end result is the best
result from all descents.
Let j be chosen at random, and jbest ← j.
For a given number of searches:

For a given number of iterations:
j′ ← step(j)
if e(j′) ≤ e(j)

j ← j′

if e(j) ≤ e(jbest)
jbest ← j

Let j be chosen at random.
return jbest

Input:
• a positive integer number of iterations for hill descent op-

timization
• a positive integer number of hill descents
Output:
• Initially prompt the user with “Iterations? ” and “Hill

descents? ”.
• After all hill descents, print the RJM with the best (min-

imum) objective function evaluation according to the
Maze Evaluation output specification.

Hill Descent with Random Uphill Steps: Using a form of
stochastic local search called Hill Descent with Random Up-
hill Steps, search the space of 5-by-5 RJMs for a given num-
ber of iterations and print the best maze evaluated according
to the objective function in the Maze Evaluation specifica-
tion.

Another strategy for escaping local minima is to allow up-
hill steps with some small probability. In this exercise, you
will modify hill descent to allow uphill steps with a given
fixed probability p.

In the Hill Descent algorithm, change “if e(j′) ≤ e(j)”
to “if e(j′) ≤ e(j) or with probability p”. Note: With p =
0, this degenerates to pure hill descent. With p = 1, this
degenerates to random walk.
Input:
• a positive integer number of iterations for hill descent op-

timization
• a probability for the acceptance of an uphill step

Output:

• Initially prompt the user with “Iterations? ” and “Uphill
step probability? ”.

• After the hill descent iterations, print the RJM with the
best (minimum) objective function evaluation according
to the Maze Evaluation output specification.

Simulated Annealing: Using a form of stochastic local
search called Simulated Annealing, search the space of 5-
by-5 RJMs for a given number of iterations and print the
best maze evaluated according to the objective function in
the Maze Evaluation specification.

One problem with Hill Descent with Random Uphill
Steps is that all uphill steps are equally likely. A small uphill
step would generally be more desirable than a large uphill
step. Simulated annealing is a stochastic local search tech-
nique based on an analogy to energy distributions in heated
materials as they cool (i.e. anneal) and “seek” a lower en-
ergy state. For example, blacksmiths long ago observed that
quenching, i.e. rapid cooling, would lead to a harder, more
brittle metal than annealing, i.e. slow cooling, which yields
a more malleable metal with a lower energy and more crys-
talline configuration.

When the material is heated (high energy input), atoms
reconfigure among different possible energies much like a
random walk. When the material is rapidly cooled (low/no
energy input), atoms reconfigure to lower energy states of-
ten getting trapped in local minima. The local minima es-
cape strategy of simulated annealing concerns a temperature
schedule, called an annealing schedule, that gradually shifts
search from a free random walk to a final descent, while fa-
voring smaller uphill steps over larger ones. In a nutshell,
for local minima, there are temperatures where one is more
likely to escape than reenter. For more on simulated anneal-
ing, see the recommended background readings online.

The practical application of simulated annealing here in-
volves very few modifications to Hill Descent with Random
Uphill Steps. Using the definitions of hill descent, we may
describe our modified algorithm as follows:

Let j be chosen at random, and jbest ← j.
Let T ← T0, where T0 is the initial temperature.
For a given number of iterations:

j′ ← step(j)
if e(j′) ≤ e(j)

j ← j′

if e(j) ≤ e(jbest) or with probability exp(e(j)−e(j′))
T

jbest ← j
T ← T × d, where d is the iteration temperature decay.

return jbest

Thus, simulated annealing in this form takes three param-
eters: number of iterations, initial temperature, and temper-
ature decay rate. Note the acceptance probability for uphill
steps: exp(e(j)−e(j′))

T . When the temperature is high, this
is close to exp(0) = 1 and acceptance of any uphill step
is very likely. As the temperature drops to zero, this ap-
proaches exp(∞) = 0 so any uphill step would be rejected.

In between, a larger uphill step leads to lower probability
acceptance.
Input:
• a positive integer number of iterations for hill descent op-

timization

• a positive floating-point initial temperature

• a positive floating-point geometric decay rate (usually
chosen slightly less than 1.0)

Output:
• Initially prompt the user with “Iterations? ”, “Initial tem-

perature? ”, and “Decay rate? ”.

• After the simulated annealing iterations, print the RJM
with the best (minimum) objective function evaluation ac-
cording to the Maze Evaluation output specification.

Finally, we note that this project nicely integrates with
the method for teaching stochastic local search described in
(Neller 2005).

Machine Learning
There is a time-quality tradeoff in RJM generation. The
stochastic local search algorithms described are anytime al-
gorithms that incur definite computational costs for possi-
ble quality improvements, so this presents a learning chal-
lenge for metalevel control of stochastic local search. In
these exercises, reinforcement learning techniques are used
to find optimal parameters for balancing time and quality
when generating large numbers of RJMs.

Restart Bandit: Use ε-greedy and softmax strategies to
learn an approximately optimal restart period that maxi-
mizes generated maze utility per unit of computation.

“One-armed bandit” is a slang reference to a slot machine.
A well-known problem in psychology and machine learning
is the n-armed bandit problem where the learner is faced
with a set of single actions with variable payouts and must
balance explorative actions that gain information about ex-
pected action utility, versus exploitative actions that use such
information to maximize utility.

In this case, let us suppose that our goal is to create a RJM
generator that uses hill descent with random restarts in order
to yield mazes with the longest solutions most efficiently.
Further, let us suppose that we value a maze with goal depth
d twice as much as a maze with goal depth (d− 1). Finally,
suppose that computation has a uniform cost per iteration.
Let d = 0 for a maze without a solution. Then we can mea-
sure the utility of a single hill descent of i iterations as 2d

i .
In this exercise, we will implement two simple techniques

for learning the approximate best number of iterations i that
maximizes the expected utility 2d

i for hill descent. Then one
can restart after i iterations and expect to maximize expected
utility of the generator per unit of computation.

For each method, we will create, in effect, a 6-armed ban-
dit by allowing 6 choices for the number of iterations be-
tween each restart: 100, 200, 400, 800, 1600, 3200, that is,
100 × 2a, a ∈ {0, . . . , 5}. Each method will learn the util-
ity of actions by using a action selection strategy that allows

explorative actions while largely taking actions that are ex-
pected to be superior.

The ε-greedy strategy for action selection chooses a ran-
dom action with probability ε, and otherwise chooses an ac-
tion with the maximum average utility experienced so far. If
ε = 1, this is purely explorative. If ε = 0, this is purely
exploitative.

The softmax strategy for action selection assigns a proba-
bility to the choice of each action a according to the normal-
ized weight exp(U(a)/τ) for some given constant τ . That
is, we compute the sum of exp(U(a)/τ) for all a, and divide
each individual term of the sum by the sum to get the action
probability.

Evaluate ε-greedy strategy and softmax strategy for Hill
Descent generation of RJMs. Evaluate three different val-
ues of ε and τ for ε-greedy strategy and softmax strategy,
respectively, for 10000 iterations each. Print tables of the
data collected for each 10000 iterations of learning.

Restart SARSA: Use the SARSA algorithm to learn an
approximately optimal restart policy that maximizes the ex-
pected generation of long-solution 5x5 RJMs per unit of
computation.

Let us suppose that, for the purposes of this exercise, we
wish to maximize the generation, per unit of computation,
of RJMs with minimum solution path lengths of at least 18
moves, i.e. with goal depth ≥ 18. When we terminate op-
timization at a threshold of satisfaction for our evaluation
function, this is called satisficing. At every decision point,
we will choose between two actions:

Go - Execute another 250 iterations of Hill Descent.

Restart - Randomize the maze state.

In our decision making we will consider two factors:

• computational time since restart - Let time t denote the
number of successive Go actions leading to the current
state. Thus, the number of iterations since the last random
restart is 250× t.

• quality of current maze state - Let d be the current maze
goal depth. Let d = 0 for a maze without a solution.

Thus, the current state can be described by the pair (t, d).
To limit the size of our learning state space, we consider
actions only for 5 values of t ∈ (0, . . . , 4) and 6 values of
d ∈ (17, 16, 15, 14, 13, 12). If d > 17, we have generated a
satisficing maze and terminate search. Let us treat all mazes
with d < 12 as being in a state with d = 12. In other words,
d = 12 actually represents the set of all maze depths ≤ 12.
If t > 4, we consider the hill descent to have taken too long,
and we force the choice of the Restart action.

The goal of this exercise is to apply the SARSA algorithm
to learn the optimal policy for Go/Restart actions so as to
maximize the expected number of satisficing mazes (with
d ≥ 18) per unit of computation, i.e. number of 250 iteration
hill descent stages.

The SARSA algorithm is an on-policy temporal differ-
ence control method for estimating the expected utility for
the current policy for each state and action pair. The policy
we will use is an ε-greedy policy with ε = 0.1.

After taking an action in a state, there is an immediate
reward. This reward can be negative (i.e. a cost). For each
Go action, there is reward of −1 reflecting computational
cost. For each satisficing maze, there is a reward of +1.
Thus, a Restart action that (with very low probability) yields
a satisficing maze would have a reward of 1, whereas the
Restart reward would be 0 otherwise. A Go action that yields
a satisficing maze would have a reward of −1 + 1 = 0,
whereas the Go reward would be −1 otherwise.

For the SARSA algorithm (Sutton & Barto 1998), we use
a learning rate α = 0.1 and a discount rate γ = 1. Execute
SARSA learning for 2000 episodes. (Use fewer episodes
for testing.) Print out the table of Q value estimates and
how many updates occurred for each state. Finally eval-
uate the policy by comparing the number of hill descent
iterations needed to generate 100 satisficing puzzles for a
greedy policy (i.e. ε = 0), and policies that only restart at
t = 1, 2, 3, 4, 5.

Maze Evaluation II
Students, faculty, and staff at Gettysburg College voluntar-
ily participated in two iterations of testing and critique of
mazes generated by stochastic local search. Each iteration
yielded new insights and maze features that may be of use
when constructing an improved energy function. A com-
plete description of our design considerations was presented
at the International Conference on Computers and Games
2010 (Neller et al. 2011), and are the basis for the sugges-
tions in this advanced design exercise.

Our initial design experiences and those of our stu-
dents completing this assignment suggest that Rook Jump-
ing Maze generation presents an excellent opportunity for
design creativity. After student(s) have solved and stud-
ied a number of puzzles generated with the simple objec-
tive/energy function, the time is ripe to ask how the ob-
jective/energy function may be improved to generate better
mazes. In this exercise, student(s) seek to improve subjec-
tive quality of generated mazes by forming subjective pref-
erences and skillfully balancing such preferences in the def-
inition of an improved objective/energy function.
Problem: Define a better maze evaluation function and ar-
gue why it leads to improved maze quality. Compare and
contrast the results obtained with your new evaluation func-
tion versus the previous evaluation function using the same
stochastic local search technique for each.

There are many features of a good RJM. Previously, we
evaluated RJMs according to solvability and the shortest dis-
tance to the goal. However, there are many other features
that may be considered as well. Here, we describe a few:

• Black holes5 - A black hole is a dead-end. Define a reach-
able cell to be a cell one can reach from the start through
a sequence of legal moves. Define a reaching cell to be
a cell from which one can reach the goal through a se-
quence of legal moves. A cell is part of a black hole if it
is a reachable, non-reaching cell.

5The descriptive maze terms “black hole” and “white hole”
were coined by maze designer Adrian Fisher.

• White holes - Some puzzlers seek to trace backwards from
the goal to the start. A white hole is a back-tracing dead
end. A cell is part of a white hole if it is an unreachable,
reaching cell.

• Start and goal positions - Is anything gained/lost by al-
lowing the position of the start and/or goal cell to vary?

• Shortest solution uniqueness - How does knowledge that
there is a unique shortest solution affect the maze solving
experience?

• Forward/backward decisions - Sometimes there is only a
single legal “forced” move from a cell. Sometimes only
a single move can lead to a cell. How do the number of
forward/backward decisions affect the maze solving ex-
perience?

• Same jump clusters - Same jump clusters are sets of cells
that all have the same jump number and reach each other
without leaving the cluster. How do same-jump clusters
affect the maze solving experience? Are some better than
others?

• Solution direction variability - How do back-and-forth
move sequences within the same row or column affect the
maze solving experience?

Select one or more of the features above that you consider
most important, compute measures for maze evaluation, and
seek to improve upon the previous RJM evaluation function.
Generate sets of puzzles using the old and new evaluation
functions, compare and contrast the puzzles, and argue why
your new evaluation function improves the average quality
of your mazes.

Project Variations
Many rich possibilities for creative variants exist, so it is not
difficult to craft a unique (i.e. not easily plagiarized) assign-
ment experience for your students.

One may vary tiling of the maze, using different regular
tilings, e.g. triangular or hexagonal. Semiregular and other
tilings present different interesting possibilities at the risk of
yielding movement instructions that are difficult for many to
grasp.

Additional topological constraints may be added or re-
moved, such as allowing toroidal wrap-around grid bound-
aries, or creating additional graph connectivity as in the ab-
stract strategy board game Surakarta.6 Simple means of
adding constraints include the addition of impassable walls
between tiles, impassable tiles, or tiles which may be passed
over but cannot be a move destination.

Movement constraints may be varied as well. With the ad-
dition of diagonal moves, the Rook Jumping Maze becomes
a Queen Jumping Maze. Robert Abbott’s “no-U-turn” rule7

increases state complexity so that the current state must be
described as the product of the row, the column, and the pre-
vious move direction.

Most of the design considerations we outline remain rele-
vant to these variations.

6http://en.wikipedia.org/wiki/Surakarta (game)
7http://www.logicmazes.com/n4mz.html

Conclusion
From these descriptions and experience in solving such
mazes, one can see that the fun challenge of generating Rook
Jumping Mazes allows a variety of learning experiences that
bring together several AI topics, including problem repre-
sentation, breadth-first search, stochastic local search algo-
rithms, reinforcement learning algorithms, and the design of
objective/utility functions.

In game/puzzle-related assignment design, it is important
to achieve a high fun-to-SLOC (Source Lines of Code) ratio
so that the experiential learning objectives are not lost in the
midst of programming complex rules and constraints. Rook
Jumping Mazes, with their extremely simple rules and repre-
sentation yet difficult and engaging play, indeed offer much
fun learning experience in relatively few lines of code.

These assignments are archived online as a 2010 Model
AI Assignment of the First Symposium on Educational Ad-
vances in Artificial Intelligence8, with further exercise de-
tails, sample transcripts, and recommended online and text
readings.

References
Hoos, H. H., and Stützle, T. 2005. Stochastic Local Search:
foundations and applications. San Francisco: Morgan
Kaufmann.
Loyd, S. 1914. Sam Loyd’s Cyclopedia of 5000 Puzzles,
Tricks, and Conundrums with Answers.
Neller, T.; Fisher, A.; Choga, M.; Lalvani, S.; and McCarty,
K. 2011. Rook jumping maze design considerations. In
van den Herik, H. J.; Iida, H.; and Plaat, A., eds., LNCS
6515: Proceedings of the Computers and Games, 7th In-
ternational Conference, CG 2010, Kanazawa, Japan, Sept.
24-26, 2010, revised selected papers, 188–198. Springer.
Neller, T. 2005. Teaching stochastic local search. In
Proceedings of the 18th International FLAIRS Conference
(FLAIRS-2005), Clearwater Beach, Florida, 8–13. AAAI
Press.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: an introduction. Cambridge, Massachusetts: MIT
Press.

8http://modelai.gettysburg.edu

