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Introduction 
 
As computer gaming reaches ever-greater heights in realism, we can expect the complexity of 
simulated dynamics to reach further as well.  To populate such gaming environments with 
agents that behave intelligently, there must be some means of reasoning about the 
consequences of agent actions.  Such ability to seek out the ramifications of various possible 
action sequences, commonly called “lookahead”, is found in programs that play chess, but 
there are special challenges that face game programmers who wish to apply AI search 
techniques to complex continuous dynamical systems.  In particular, the game programmer 
must “discretize” the problem, that is, approximate the continuous problem as a discrete 
problem suitable for an AI search algorithm. 
 
As a concrete example, consider the problem of navigating a simulated submarine through a 
set of static obstacles.  This continuous problem has infinite possible states (e.g. submarine 
position and velocity) and infinite possible trajectories.  The standard approach to discretize 
the problem is to define a graph of “waypoints” between which the submarine can easily travel.  
A simple waypoint graph can be searched, but this approach is not without significant 
disadvantages.   
 
First, the dynamics of such approximate navigation are not realistic.  It’s still common to see 
massive vehicles in computer games turn about instantly and maintain constant velocity at all 
times.  When considering acceleration in agent behavior, there’s a quick realization that the 
notion of a “waypoint” becomes far more complex.  For example, a vehicle with realistic 
physical limitations cannot ignore momentum and turn a tight corner at any velocity.  A 
generalized waypoint for such a system would contain not only a position vector, but a velocity 
vector as well, doubling the dimensions of the waypoint.  If waypoint density is held constant, 
memory requirements grow exponentially with the waypoint dimensions. 
 
The second disadvantage is that relevant state can incorporate many factors beyond 
waypoints in a dynamic environment. If the programmer wishes the submarine to pilot around 
moving obstacles, state dimensionality is further increased along with an exponential increase 
of the memory requirements for our state-based discretization.  
 
An alternative way to look at the discretization of continuous search problems makes no 
attempt to discretize the search space at all.   Instead, the programmer focuses on two 
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separate discretization issues: (1) discretizing action parameters (choosing a set of ways to 
act), and (2) discretizing action timing (choosing when to act).  When high-dimensionality of the 
state space makes it infeasible to perform a state-based discretization for search, an action-
based discretization can provide a feasible solution if the computer agent control interface is 
low dimensional with few discrete action alternatives.  
 
Even so, action-based discretization is not trivial.  In our submarine example, an action-based 
approach might sample control parameters that affect positional and angular velocity.  The 
choice of the sample is (1) not obvious, and (2) crucial to the effectiveness of search.  
Additionally, the programmer needs to choose good timing of control actions.  If time intervals 
between actions are too short/long, search is too shallow/deep in time and behavior is thus 
shortsighted/inadequately responsive. 
 
This paper reviews state-of-the-art search algorithms (e.g. Epsilon-Admissible Iterative-
Deepening A* and Recursive Best-First Search), and presents new action-based discretization 
search algorithms that perform action parameter and action timing discretization for the user.  
In particular, we show how new iterative-refinement approaches provide better, more robust 
performance than previous algorithms with fixed action-timing discretization.  Finally, we 
compare three different means of action-parameter discretization, including a dispersion 
technique that generates an approximate uniform sampling of closed action-spaces. 
 
Action-Based Discretization 
 
Artificial Intelligence search algorithms search discrete systems, yet we live and reason in a 
continuous world.  Continuous systems must first be discretized, i.e. approximated as discrete 
systems, to apply such algorithms.  There are two common ways that continuous search 
problems are discretized: state-based discretization and action-based discretization.  State-
based discretization becomes infeasible when the state space is highly dimensional.  Action-
based discretization becomes infeasible when there are too many degrees of freedom.  
Interestingly, biological high-degree-of-freedom systems are often governed by a much smaller 
collection of motion primitives [Mataric, 2000].  We focus here on action-based discretization. 
 
Action-based discretization consists of two parts: (1) action parameter discretization and (2) 
action timing discretization, i.e. how and when to act.  See Figure 1.  The most popular form of 
discretization is uniform discretization.  It is common to sample possible actions and action 
timings at fixed intervals.  
 
For the following algorithms, we focus on action-timing discretization.  Experimental evidence 
of this paper and previous studies [Neller, 2000] suggests that a fixed uniform discretization of 
time is not advisable for search if one has a desired solution cost upper bound.  Rather, a new 
class of algorithms that dynamically adjust action timing discretization can yield significant 
performance improvements over static action timing discretization. 



 
Figure 1: Action-based discretization. 

 
Iterative-refinement algorithms use a simple means of dynamically adjusting the time interval 
between search states.  We will present the results of an empirical study of the performance of 
different search algorithms as one varies the initial time interval between search states.  We 
formalize our generalization of search, describe the algorithms compared, present our chosen 
class of test problems, and present the experimental results. 
 
Dynamic Action Timing Discretization 
 
We will assume that the action parameter discretization, i.e. which action parameters are 
sampled, is already given.  From the perspective of the search algorithm, the action 
discretization is static (cannot be varied by the algorithm).  However, action timing 
discretization is dynamic (can be varied by the algorithm).  For this reason, we will call such 
searches "SADAT searches" as they have Static Action and Dynamic Action Timing 
discretization. 
 
SADAT searches are different than classical AI searches in only one respect.  An action (i.e. 
operator) additionally takes a time delay parameter indicating how much time will pass before 
the next action is taken.  For dynamical systems where timing is relevant, this is an important 
generalization. 
 
A SADAT search problem is made up of four parts: 
 

1. state space (a set of possible states), 
2. an initial state, 
3. a finite set of actions that map a state and a positive time duration to a successor state 

and a transition cost, and 
4. a set of goal states. 

 



In fact, one could view this as having only three parts if you define the state space in terms of 
(2) and (3) for all possible time durations. 
 
In classical search, a goal path can be specified as a sequence of actions that evolve the initial 
state to a goal state.  Now that the timing of actions is a choice, a goal path can be specified 
as a sequence of action-duration pairs that evolve the initial state to a goal state.  The cost of a 
path is the sum of all transition costs.  Given this generalization, the state space is generally 
infinite, and the optimal path can generally only be approximated through a sampling of 
possible paths through the state space. 
 
Algorithms 
 
The following algorithms are all written in Richard Korf’s style of pseudo-code.  In an object-
oriented implementation, one would naturally have node objects.  All of these algorithms 
simply exit when a goal node is found.  Since at any time, the call stack contains all relevant 
path information for the current node, one could easily modify the algorithms to put node and 
action information onto a stack while exiting, allowing easy retrieval of the solution path. 
 
Iterative-Deepening A* 
 
All searches have exponential time complexity (O(bd) where b is breadth and d is depth of the 
search tree.)  Depth-first search has linear (O(d)) memory complexity, but does not necessarily 
find optimal (or even good) solutions.  Breadth-first search finds minimum depth solutions, but 
does so with exponential memory cost.  A* search (best-first search with an admissible 
heuristic) uses a heuristic function to direct search and reduce the cost of search.  However, 
memory complexity is still exponential. 
 
IDA* [Korf, 1985] provides a means of having linear memory complexity and optimality, at the 
cost of node re-expansion.  IDA* performs depth-first searches to successively greater f-value 
bounds until a solution is found.  The pseudo-code for IDA* is as follows: 
 
IDASTAR (node : N) 
B := f(N); 
WHILE (TRUE) 
  B := IDASTARB(N, B) 
 
This outermost loop depends on a recursive depth-first search to an f-value bound B:  
 
IDASTARB (node : N, bound : B) 
IF N is a goal, EXIT algorithm 
IF N has no children, RETURN infinity 
FN = infinity 
FOR each child Ni of N, F[i] := f(Ni) 
  IF f(Ni) <= B, FN := MIN(FN, IDASTARB(Ni,B)) 
  ELSE FN := MIN(FN, f(Ni)) 
RETURN FN 
 
If the recursive search is unsuccessful, it returns the lowest f-value encountered beyond the 
current bound.  The outermost loop then revises the bound to this value and searches to this 



greater bound.  The amount of node re-expansion is problematic if there are many distinct f-
values.  Such is true of most real-valued search problems.  This problem is addressed by the 
epsilon-admissible variant described below.   
 
��-Admissible IDA* 
 
�-Admissible iterative-deepening A* search, here called �-IDA*, is a version of IDA* where the 
f-cost limit is increased "by a fixed amount � on each iteration, so that the total number of 
iterations is proportional to 1/�.  This can reduce the search cost, at the expense of returning 
solutions that can be worse than optimal by at most �."[Russell & Norvig, 1995] 
 
Actually, our implementation is an improvement on �-IDA* as described above.  If �f is the 
difference between (1) the minimum f-value of all nodes beyond the current search contour, 
and (2) the current f-cost limit, then the f-cost limit is increased by the maximum of � and �f. 
(�f is the increase that would occur in IDA*.)  Thus, the limit is increased by at least � or more 
if the minimum node f-cost beyond the contour exceeds this increase.  This improvement is 
significant in cases where the f-cost limit changes between iterations can significantly exceed 
�.  The recursive procedure of �-IDA* is identical to that of IDA*.  The difference is in the 
computation of successive bounds in the outermost loop: 
 
eIDASTAR (node : N) 
B := f(N); 
WHILE (TRUE) 
  B := MAX(IDASTARB(N, B), B+ � ) 
 
To make this point concrete, suppose the current iteration of �-IDA* has an f-cost limit of 1.0 
and returns no solution and a new f-cost limit of 2.0.  The new f-cost limit is the minimum 
heuristic f-value of all nodes beyond the current search contour.  Let us further assume that � 
is 0.1.  Then increasing the f-cost limit by this fixed � will result in the useless search of the 
same contour for 9 more iterations before the new node(s) beyond the contour are searched.  
In our implementation above, the f-cost limit would instead increase directly to 2.0. 
 
Recursive Best-First Search 
 
Recursive best-first search (RBFS) [Korf, 1993] is a significant improvement over IDA*.  RBFS 
also expands nodes in best-first order and has linear memory complexity.  It also expands 
fewer nodes than IDA* for nondecreasing cost functions.  This is accomplished by some extra 
bookkeeping concerning node re-expansion.  Korf’s RBFS algorithm is as follows: 
 
RBFS (node: N, value: F(N), bound: B) 
IF f(N)>B, RETURN f(N) 
IF N is a goal, EXIT algorithm 
IF N has no children, RETURN infinity 
FOR each child Ni of N, 
  IF f(N)<F(N), F[i] := MAX(F(N),f(Ni)) 
  ELSE F[i] := f(Ni) 
sort Ni and F[i] in increasing order of F[i] 
IF only one child, F[2] := infinity 



WHILE (F[1] <= B and F[1] < infinity) 
  F[1] := RBFS(N1, F[1], MIN(B, F[2])) 
  insert Ni and F[1] in sorted order 
RETURN F[1] 

 
RBFS suffers from the same problem as IDA* when there are many distinct f-values.  This 
problem is addressed by the new epsilon-admissible variant of RBFS described below.   
 
��-Admissible RBFS 
�-Admissible recursive best-first search [Neller, 2000], here called �-RBFS, is a new �-
admissible variant of recursive best-first search [Korf, 1993].  As with our implementation of �-
IDA*, local search bounds increase by at least � but possibly more as necessary to avoid 
redundant search. 
 
In Korf's style of pseudo-code, �-RBFS is as follows: 
 
eRBFS (node: N, value: F(N), bound: B) 
IF f(N)>B, RETURN f(N) 
IF N is a goal, EXIT algorithm 
IF N has no children, RETURN infinity 
FOR each child Ni of N, 
  IF f(N)<F(N), F[i] := MAX(F(N),f(Ni)) 
  ELSE F[i] := f(Ni) 
sort Ni and F[i] in increasing order of F[i] 
IF only one child, F[2] := infinity 
WHILE (F[1] <= B and F[1] < infinity) 
  F[1] := eRBFS(N1, F[1], MIN(B, MAX(F[2], F[1]+ � ))) 
  insert Ni and F[1] in sorted order 
RETURN F[1] 
 
The difference between RBFS and �-RBFS is in the computation of the bound for the recursive 
call.  In RBFS, this is computed as MIN(B, F[2]) whereas in �-RBFS, this is computed as 
MIN(B, MAX(F[2], F[1]+�)).  F[1] and F[2] are the lowest and second-lowest stored 
costs of the children, respectively.  Thus, the bound of the recursive call will not exceed that of 
its parent, and will be the greater of (1) the stored value of the lowest-cost sibling F[2] and (2) 
its own stored value F[1] plus �. 
 
The algorithm’s initial call parameters are the root node r, f(r), and ∞.  Actually, both RBFS and 
�-RBFS can be given a finite bound b if one wishes to restrict search for solutions with a cost 
of no greater than b, and uses an admissible heuristic function.  If no solution is found, the 
algorithm will return the f-value of the minimum open search node beyond the search contour 
of b. 
 
In the context of SADAT search problems, both �-IDA* and �-RBFS assume a fixed time 
interval �t between a node and its child.  The following iterative-refinement algorithms do not. 
 



(a) (b)  
Figure 2: Iterative-deepening and iterative-refinement  depth-first search. 

 
Iterative-Refinement 
 
Iterative-refinement [Neller, 2000] is perhaps best described in comparison to iterative-
deepening.  Iterative-deepening depth-first search (Figure 2(a)) provides both the linear 
memory complexity benefit of depth-first search and the minimum-length solution-path benefit 
of breadth-first search at the cost of node re-expansion.  Such re-expansion costs are 
generally dominated by the cost of the final iteration because of the exponential nature of 
search time complexity.   
 
Iterative-refinement depth-first search (Figure 2(b)) can be likened to an iterative-deepening 
search to a fixed time-horizon.  In classical search problems, time is not an issue.  Actions lead 
from states to other states.  When we generalize such problems to include time, we then have 
the choice of how much time passes between search states.  Assuming that the vertical time 
interval in Figure 2(b) is �t, we perform successive searches with delays �t, �t/2, �t/3, … until 
a goal path is found. 
 
Iterative-deepening addresses our lack of knowledge concerning the proper depth of search.  
Similarly, iterative-refinement addresses our lack of knowledge concerning the proper time 
discretization of search.  Iterative-deepening performs successive searches that grow 
exponentially in time complexity.  The complexity of previous unsuccessful iterations is 
generally dominated by that of the final successful iteration.  The same is true for iterative-
refinement. 
 
However, the concept of iterative-refinement is not limited to the use of depth-first search.  In 
general, for each iteration of an iterative-refinement search, a level of (perhaps adaptive) time-
discretization granularity is chosen for search and an upper bound on solution cost is given.  If 
the iteration finds a solution within this cost bound, the algorithm terminates with success.  
Otherwise, a finer level of time-discretization granularity is chosen, and search is repeated.  
Search is successively refined with respect to time granularity until a solution is found. 
 



Iterative-Refinement ��-RBFS 
 
Iterative-Refinement �-RBFS is one instance of such iterative-refinement search.  The 
algorithm can be simply described as follows: 
 
IReRBFS (node: N, bound: B, initDelay: DT) 
FOR I = 1 to infinity 
  Fix the time interval between states at DT/I 
  eRBFS(N, f(N), B) 
  IF eRBFS exited with success, EXIT algorithm 
 
Iterative-Refinement �-RBFS does not search to a fixed time-horizon.  Rather, each iteration 
searches within a search contour bounded by B.  Successive iterations search to the same 
bound, but with finer temporal detail. 
 
Iterative-Refinement DFS 
 
The algorithm for Iterative-Refinement DFS is given as follows: 
 
IRDFS (node: N, bound: B, initDelay: DT) 
FOR I = 1 to infinity 
  Fix the time interval between states at DT/I 
  DFS-NOUB(N, f(N), B) 
  IF DFS-NOUB exited with success, EXIT algorithm 
 
Our depth-first search implementation DFS-NOUB uses a node ordering (NO) heuristic and 
has a path cost upper bound (UB).  The node-ordering heuristic is as usual: Nodes are 
expanded in increasing order of f-value.  Nodes are not expanded that exceed a given cost 
upper bound.  Assuming admissibility of the heuristic function h, no solutions within the cost 
upper bound will be pruned from search. 
 
Sphere Navigation Search Problem 
 
Since SADAT search algorithms will generally only be able to approximate optimal solutions, it 
is helpful to test them on problems with known optimal solutions.  Richard Korf proposed the 
problem of navigation between two points on the surface of a sphere as a simple benchmark 
with a known optimal solution.  Our version of the problem is given here. 
 
The shortest path between two points on a sphere is along the great-circle path.  Consider the 
circle formed by the intersection of a sphere and a plane through two points on the surface of 
the sphere and the center of the sphere.  The great-circle path between the two points is the 
shorter part of this circle between the two points. The great-circle distance is the length of this 
path. 
 
Our state space is the set of all positions and headings on the surface of a unit sphere along 
with all nonnegative time durations for travel.  Essentially, we encode path cost (i.e. time) in 
the state in order to define the goal states.  The initial state is arbitrarily chosen to have 
position (1,0,0) and velocity (0,1,0) in spherical coordinates, with no time elapsed initially. 



 
The action ai,  0�i�7 takes a state and time duration, and returns a new state and the same 
time duration (i.e. cost = time).  The new state is the result of changing the heading i*%/4 
radians and traveling with unit velocity at that heading on the surface of the unit sphere.  If the 
position reaches a goal state, the system stops evolving (and incurring cost). 
 
The set of goal states includes all states that are both (1) within �d great-circle distance from a 
given position pg, and (2) within �t time units of the optimal duration to reach such positions.  
Put differently, the first requirement defines the size and location of the destination, and the 
second requirement defines how directly the destination must be reached.  Position pg is 
chosen at random from all possible positions on the unit sphere with all positions being equally 
probable. 
 
If d is the great-circle distance between (1,0,0) and pg, then the optimal time to reach a goal 
position at unit velocity is d - �d.  Then the solution cost upper bound is d - �d + �t. 
 
Experimental Results 
 
In these experiments, we vary only the initial time delay �t between search states and observe 
the performance of the algorithms we have described.  For �-IDA* and �-RBFS, the initial �t is 
the only �t for search.  The iterative-refinement algorithms search using the harmonic 
refinement sequence �t, �t/2, �t/3, …, and are limited to 1000 refinement iterations.  
 
Experimental results for success rates of search are summarized in Figure 3.  Each point 
represents 500 trials over a fixed, random set of sphere navigation problems with �d = .0001 
and �t computed as 10% of the optimal time.  Thus, the target size for each problem is the 
same, but the varying requirement for solution quality means that different delays will be 
appropriate for different search problems.  Search was terminated after 10 seconds, so the 
success rate is the fraction of time a solution was found within this allotted time.  
 
In this empirical study, means and 90% confidence intervals for the means were computed 
with 10000 bootstrap resamples.   
 
Let us first compare the performance of iterative-refinement (IR) �-RBFS and �-RBFS.  To the 
left of the graph, where the initial �t0 is small, there is no difference between the two 
algorithms.  This region of the graph indicates conditions under which a solution is found within 
10 seconds on the first iteration or not at all.  There is no iterative-refinement in this region; the 
time complexity of the first iteration leaves no time for another. 
 
At about �t0 = .1, we observe that IR �-RBFS begins to have a significantly greater success 
rate than �-RBFS.  At this point, the time complexity of search allows for multiple iterations, 
and thus we begin to see the benefits of iterative-refinement.   
 



 
Figure 3: Effect of varying initial 

� �
t. 

 
 
Continuing to the right with greater initial �t0, IR �-RBFS peaks at a 100% success rate.  At 
this point, the distribution of �t's over different iterations allows IR �-RBFS to reliably find a 
solution within the time constraints.  We can see the distribution of �t's that most likely yield 
solutions from the behavior of �-RBFS. 
 
Where the success rate of IR �-RBFS begins to fall, the distribution of first 1000 �t's begins to 
fall outside of the region where solutions can be found.  With our refinement limit of 1000, the 
last iteration uses a minimal �t = �t0/1000.  The highest �t0 trials fail not because time runs 
out.  Rather, the iteration limit is reached.  However, even with a greater refinement limit, we 
would eventually reach a �t0 where the iterative search cost incurred on the way to the good �t 
range would exceed 10 seconds. 
 
Comparing IR �-RBFS with IR DFS, we first note that there is little difference between the two 
for large �t0.  For 3.16��t0�100, the two algorithms are almost always able to perform 
complete searches of the same search contours through all iterations up to the first iteration 



with a solution path.  The largest statistical difference occurs at �t0 = 316 where IR DFS's 
success rate is 4.4% higher.  We note that our implementation of IR DFS has a faster node-
expansion rate, and that �-RBFS's �-admissibility necessitates significant node re-expansion.  
For these �t0's, the use of IR DFS trades off �-optimality for speed and a slightly higher 
success rate. 
 
For low-to-mid-range �t0 values, however, we begin to see the efficiency of �-RBFS over DFS 
with node ordering as the first iteration with a solution path presents a more computationally 
costly search.  Since the target destination is so small, the route that actually leads through the 
target destination is not necessarily the most direct route.  Without a perfect heuristic where 
complex search is necessary, �-RBFS shows its strength relative to DFS.  Rarely will problems 
be so unconstrained and offer such an easy heuristic as this benchmark problem, so IR �-
RBFS will be generally be better suited for all but the simplest search problems. 
 
Comparing IR �-RBFS with �-IDA*, we note that �-IDA* performs relatively poorly over all �t0.  
What is particularly interesting is the performance of �-IDA* over the range where IR �-RBFS 
behaves as �-RBFS, i.e. where no iterative-refinement takes place.  Here we have empirical 
confirmation of the significant efficiency of �-RBFS over �-IDA*. 
 
In summary, iterative-refinement algorithms are statistically the same as or superior the other 
searches over the range of �t0 values tested.  IR �-RBFS offers the greatest average success 
rate across all �t0.  With respect to �-RBFS, IR �-RBFS offers significantly better performance 
for �t0 spanning more than four orders of magnitude.  These findings are in agreement with 
previous empirical studies concerning a submarine detection avoidance problem [Neller, 
2000]. 
 
This is significant for search problems where reasonable values for �t are unknown.  This is 
also significant for search problems where reasonable values for �t are known and one wishes 
to find a solution more quickly and reliably.  This performance comes at a reasonable price for 
many applications.  Lack of knowledge of a good time discretization is compensated for by 
knowledge of a suitable solution cost upper bound. 
 
Dynamic Action Parameter Discretization 
 
Having looked at some methods for performing dynamic action timing discretization, we will 
now focus on dynamic action parameter discretization.  Now we will assume that the action 
timing discretization, i.e. when actions are taken, is already given.  From the perspective of the 
search algorithm, the action timing discretization is static (cannot be varied by the algorithm).  
However, the action parameter discretization is dynamic (can be varied by the algorithm).  For 
this reason, we will call such searches "DASAT searches" as they have Dynamic Action and 
Static Action Timing discretization.   
 
DASAT are different than classical AI searches in only one respect.  There are infinite ranges 
of action parameters.  In the context of navigation, the choice of a heading change can come 
from an infinite continuum of angle choices 0 - 2%.  For dynamical systems where the choice of 
action parameters is relevant, this is an important generalization. 



 
A DASAT search problem is made up of four parts: 
 

1. state space (a set of possible states), 
2. an initial state, 
3. a finite set of actions regions which define possible parameter ranges for actions, where 

each point in the region represents an action that maps a state to a successor state and 
a transition cost, and 

4. a set of goal states. 
 
Given this generalization, the state space is generally infinite, and the optimal path can 
generally only be approximated through a sampling of possible paths through the state space. 
 
When both action parameter and action timing discretizations are dynamic, we call such 
searches “DADAT” searches.  The following experiments were performed with DADAT 
searches using a form of iterative-refinement depth-first search and three different forms of 
action parameter discretization. 
 
Submarine Channel Problem 
 
The Submarine Channel Problem is not unlike a Sega™ video game of the 1980's called 
Frogger.  A submarine seeks a path through a channel such that it avoids being detected by a 
number of patrolling ships.  We have chosen this problem because, like the n2-1 sliding tile 
puzzles, it can serve as a benchmark easily scalable to greater difficulty. 
 

 
Figure 4: Submarine Channel Problem 



 
In the Submarine Channel Problem, the submarine starts at position (x, y) = (0, 0) with 
eastward heading and at full stop.  To the east along an east-west channel of width w 
(centered along y=0) are n ships patrolling across the width of the channel.  This is pictured in 
Figure 4. 
 
Each ship j has an inner detection radius ri,j and an outer detection radius ro,j.  Within a 
proximity of ri,j, ship j will detect the submarine and the submarine will be penalized with a 
detection penalty.  Within a proximity of ro,j and beyond ri,j, the submarine incurs a proximity 
penalty scaling linearly from 0 at the outer radius to the full detection penalty at the inner 
radius.  Beyond the outer radius, there is no penalty.  If the submarine collides with the sides of 
the channel, there is a collision penalty.  In the case of collision or detection, the submarine is 
halted and allowed no further legal moves.  The first ship patrols at an x-offset xOffset1 = ro,1.  
Each ship k thereafter has xOffsetk = xOffsetk-1 + 3ri,k-1 + ri,k.  Ship k has a patrolling route 
defined by cycling linearly between the following points: (xOffsetk, w/2-ri,k), (xOffsetk+2ri,k, w/2-
ri,k ), (xOffsetk +2ri,k, -w/2+ri,k), and (xOffsetk, -w/2 + ri,k).  Each ship begins at a given 
percentage along this cycle.  For n ships, the goal states are all states within the channel with 
x > xOffsetn + 2ri,n + ro,n, i.e. all channel points to the right of the rightmost outer detection 
radius. 
 
The submarine can travel in 8 headings (multiples of %/4 radians), and 3 speeds: full speed, 
half speed, and full stop.  Together these define 17 distinct actions the submarine can take at 
any point which it has incurred neither collision nor full detection penalty.  (Since we assume 
discrete, instantaneous changes to headings and speeds, all full stop actions are effectively 
equivalent.)  Each ship travels at a single predefined speed. 
 
Random, Uniform, and Dispersed Discretization 
 
Generalizing the submarine channel problem for DADAT search, we allow any heading and 
any speed up to the maximum.  Thus an action, i.e. changing heading and speed, can be 
thought of as picking a point in a circular region with the radius being the maximum speed.  
The center point is a full stop, and any other point indicates a heading and speed (in polar 
coordinates).   
 
Faced with this freedom of choice in our search algorithms, we present three ways of 
performing dynamic action parameter discretization.  First, we can randomly choose 
parameters with independent uniform distributions over headings and speeds.  Second, we 
can take a fixed uniform discretization as described above and rotate it by a random angle.  
Third, we can seek to generate a discretization with action parameters as “far” from each other 
as possible.  We call this last technique “dispersed discretization”. 
 
The basic idea of “dispersed” discretization is to take a number of randomly sampled points 
from the action region and simulate them as if they were point charges mutually repelling each 
other with force proportional to the inverse square of their distance.  The point dispersion 
algorithm pseudo-code is as follows: 
 



DISPERSE (REGION, SAMPLES, WEIGHT, DECAY, ITERATIONS) 
FOR I = 1 to SAMPLES 
  X[I] := random point in REGION 
FOR I = 1 to ITERATIONS 
  FOR J = 1 to SAMPLES 
    DX[J] := 0 
    FOR K = 1 to J 
      DIFFERENCE := X[K] – X[J] 
      DISTANCE := SQRT(X[J]2 + X[K]2) 
      DX[J] := DX[J] – DIFFERENCE/(DISTANCE3) 
      DX[K] := DX[K] + DIFFERENCE/(DISTANCE3) 
  FOR J = 1 to SAMPLES 
    DX[J] := WEIGHT * DX[J] 
    X[J] := X[J] + DX[J] 
    IF X[J] not in REGION, 
      reassign X[J] to the closest point in the REGION 
  WEIGHT := WEIGHT * DECAY 
RETURN X 

 
We used a repulsion factor of 0.008 and a repulsion factor decay of 0.93 for 20 iterations.  
These values were chosen empirically based on a small number of trials with the submarine 
action region.  In future work, we would desire these dispersion parameters to be rapidly self-
adapting to the size of the region and the number of sampled points. 
 
Experimental Results 
 
For these experiments, we have chosen w=1 length unit.  The outer radius of each ship is 
0.2w.  The inner radius of each ship is 0.1w.  The maximum velocity of the submarine is w/(1 
time unit).  All ship velocities are also w/(1 time unit).  Ships are started at random percentages 
through their patrol cycles.  The detection and collision penalties are set at 10000.  In each 
experimental trial we generated a random 10-ship submarine channel problem.  A successful 
trial found a solution within 10 seconds of search.  For each initial time delay �t we ran 100 
trials. 
 
Figure 5 summarizes experimental results comparing the performance of random, uniform, and 
dispersed discretization techniques used with a form of iterative-refinement depth-first search.  
Note that the dispersed discretization rate of success exceeds that of the other discretization 
techniques. 
 
Looking over a number of dispersed discretizations, one quickly notices that more points are 
repelled to the edge than in the uniform discretization.  Although not a probable configuration, 
any number of points placed at even intervals around the edge would be in equilibrium.  With 
repulsion parameters given above, it was typical to see 12 or more points along the edge of 
the circle with 5 or fewer points dispersed internally.  Empirically, extreme parameters 
represented by the edge of the circular action region are more likely to appear in optimal 
solutions.  We hypothesize that having extra edge action choices aids in finding better 
approximations to optimal solutions. 



 
Figure 5: Varying initial delay with different action parameter discretizations. 

 
Furthermore, in this problem domain, searches of faster submarine trajectories (i.e. with 
discretizations having more maximal velocities) will have lesser search depths to solutions if 
such speedy solution trajectories exist.  Since search depth affects search time complexity 
exponentially, we likely benefit from a discretization with more maximal velocity values. 
 
One key lesson in this and other experiments of [Neller, 2000] is that behaviors of greatest 
interest often occur at extreme parameter values.  Another key lesson is that an automated 
discretization technique outperformed one hand-chosen by researchers (uniform).  Not only 
can such discretization techniques reduce the discretization burden of the programmer; they 
may also yield superior discretizations. 
 
Conclusions 
 
Artificial Intelligence search algorithms search discrete systems.  To apply such algorithms to 
continuous systems, such systems must first be discretized, i.e. approximated as discrete 
systems.  Action-based discretization requires that both action parameters and action timing 
be discretized. 



 
The empirical study concerning sphere navigation provided insight into the importance of 
searching with dynamic time discretization.  Iterative-refinement algorithms are given an initial 
time delay �t0 between search states and a solution cost upper bound.  Such algorithms 
iteratively search to this bound with successively smaller �t until a solution is found. 
 
Iterative-refinement �-admissible recursive best-first search (IR �-RBFS) was shown to be 
similar or superior to all other searches studied for �t0 spanning over five orders of magnitude.  
With respect to �-RBFS (without iterative-refinement), a new �-admissible variant of Korf's 
recursive best-first search, IR �-RBFS offers significantly better performance for �t0 spanning 
over four orders of magnitude. 
 
Iterative-refinement algorithms are important for search problems where reasonable values for 
�t are (1) unknown or (2) known and one wishes to find a solution more quickly and reliably.  
The key tradeoff is that of knowledge.  Lack of knowledge of a good time discretization is 
compensated for by knowledge of a suitable solution cost upper bound.  If one knows a 
suitable solution cost upper bound for a problem where continuous time is relevant, an 
iterative-refinement algorithm such as IR �-RBFS is recommended. 
 
Finally, in the context of a submarine detection avoidance problem, we introduced a dispersed 
discretization technique for dynamically choosing action parameters.  The resulting 
discretization was superior to a uniform discretization chosen by researchers.   
Here we have presented a few techniques for dynamically discretizing both action parameters 
and action timings of continuous search problems with empirical evidence of their benefits.  
We see this work as providing first steps in a class of algorithms that will prove important in the 
application of AI search algorithms to continuous problem domains. 
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