Information-Based Alpha-Beta Search and the
Homicidal Chauffeur

Todd W. Neller*

Gettysburg College
tneller@gettysburg.edu

Abstract. The standard means of applying a discrete search to a con-
tinuous or hybrid system is the uniform discretization of control actions
and action timing. Such discretization is fixed a priori and does not allow
search to benefit from information gained at run-time. This paper intro-
duces Information-Based Alpha-Beta Search, a new algorithm that pre-
serves and benefits from the continuous or hybrid nature of the search. In
a novel merging of alpha-beta game-tree search and information-based
optimization, Information-Based Alpha-Beta Search makes trajectory-
sampling decisions dynamically based on the maximum-likelihood of
search pruning. The result is a search algorithm which, while incurring
higher computational overhead for the optimization, manages to so in-
crease the quality of the sampling, that the net effect is a significant
increase in performance. We present a new piecewise-parabolic variant
of the algorithm and provide empirical evidence of its performance rel-
ative to random and uniform discretizations in the context of a variant
of the homicidal chauffeur game.

1 Motivation

Locally optimal (“greedy”) control decisions are not necessarily globally optimal
control decisions for many systems. Some sort of “lookahead” facility is necessary
to derive optimal or approximately optimal control policies. Tree-based search
techniques have proven powerful for lookahead in some complex discrete systems,
but are not easily applied to continuous or hybrid systems. One reason is that
an a priori discretization of control actions is necessary. A good discretization is
often not easy to discern.

We introduce a new technique which performs discretization dynamically
during search according to maximum-likelihood reasoning. This technique lifts
the burden of discretization from the control engineer and, as we shall see, can
outperform standard discretization approaches. Thus the primary contribution
of this paper is a technique that enables both easier and better use of search tech-
niques for lookahead in continuous and hybrid control systems. The remainder
of this section relates these thoughts in greater detail.

* This work was done both at the Stanford Knowledge Systems Laboratory with sup-
port by NASA Grant NAG2-1337, and at Gettysburg College. Author’s address:
Department of Computer Science, Gettysburg College, Gettysburg, PA, 17325, USA.



Many optimal control techniques seek to optimize some performance measure
by steepest ascent or descent of the measure’s gradient. While locally optimal,
such “greedy” control actions are not necessarily optimal with respect to finite
or infinite time-horizons. In discrete systems, this is easily illustrated with the
game of chess. If the performance measure is based on material advantage, the
player who employs a greedy policy falls victim to a clever opponent’s sacrifices
where short-term material advantage is followed by a stronger counter-attack.
The player with foresight looks beyond the immediate gain to the ramifications
of that gain.

For continuous systems, we may imagine a pursuit-evasion game in which the
evader wants to avoid prolonged close proximity with a slightly faster pursuer.
The greedy evader immediately in front of the pursuer will seek to maintain as
much distance from the pursuer as possible by running away in the same direction
of pursuit. The evader with foresight looks beyond the immediate situation to see
that charging towards the pursuer and then breaking to the side will put it behind
the pursuer. A temporary increase in proximity makes possible a significant
decrease in proximity as the pursuer struggles to turn and renew pursuit. For
hybrid systems, we may imagine a pursuit-evasion game with environmental
constraints (e.g. dangerous airspace, terrain features, etc.).

From these examples, we can see the performance benefit of global “looka-
head” versus local “greedy” policies. In situations where we have a small, finite
state space (or a continuous or hybrid state space approximable as such), we
can apply dynamic programming to compute a globally optimal control policy.
However, such situations are rare in practice. With an increase in the dimen-
sionality of a state space, either the necessary memory or the granularity of the
discretization grows exponentially, making such approaches infeasable.

However, in the case where (1) an approximate continuous or hybrid simula-
tion model can be derived for the system, (2) limited lookahead with this model
enables better performance, and (3) a sampling of the action space (i.e. space
of possible control input vectors) is adequate to inform a good decision, we can
benefit from tree-search techniques. Such techniques sample possible sequences
of control actions and use that sample to approximate optimal behavior.

From any given state, a sample of possible control actions and an assumed
delay before the next action yields a sample of possible future states. These
future states may in turn be used to generate a sample of further future states
until we reach a search stopping condition. The result is a discrete search tree
which can be used to approximate the utility of a sample of control actions. The
best of these actions in turn approximates the optimal control action.

One drawback to standard search approaches is that they assume that the
actions (i.e. control inputs) are discretized a priori into a finite set of actions.
Finding a good discretization of control inputs is often not a trivial task. By
committing to a fixed or static action discretization, standard approaches cannot
dynamically adapt the sampling at run-time in order to improve the quality of
the discretization.



To illustrate this, we turn again to the pursuit-evasion example. Suppose
the evader samples a few possible directions for evasion and looks ahead at
branching trees of possible trajectories in these directions. Lookahead indicates
that some directions are especially good. In greatest likelihood, the evader will
find better control actions closer to those sampled actions which appear best.
This intuitive sort of dynamic sampling behavior is not possible in pre-existing
search formalisms.

This paper introduces a new formalism for hybrid games, and a new and
powerful technique which works with a subset of such games: Information-Based
Alpha-Beta Search. Not only does the algorithm preserve the continuous or
hybrid nature of control actions in search, but it also reaps performance benefits
from this preservation.

2 Alpha-Beta Search

In this section, we describe the game-tree search technique commonly known
as “alpha-beta search” or “minimax search with alpha-beta pruning”. Before
introducing basic concepts of game-tree search, it is important to motivate the
use of such algorithms and place them in context.

At heart, artificial intelligence (AI) search algorithms are a form of opti-
mization. The primary distinction between search algorithms and other forms of
optimization is that search algorithms optimize utility (i.e. performance index)
over sequences of actions (i.e. control vector sequences). Unlike optimal control
formulations of multi-stage problems, AI search does not assume a finite num-
ber of stages. However, by computational necessity, the search is often biased
towards shorter sequences of actions. Any process which can benefit from exam-
ining the ramifications of short sequences of control decisions can benefit from
this form of optimization.

A classical AT game-tree search problem definition concerns discrete system
dynamics and consists of three components: (1) an initial state (including system
state and current player), (2) a successor function (a mapping from states to sets
of possible future states', and (3) a wtility function (a mapping from states to
the value of being in that state). (1) and (2) define the state space. An alternate
formalism we use breaks component (2) into two parts: (2a) an operator function
(a mapping from states to sets of legal actions), and (2b) a mapping from states
and actions to resulting states. We prefer this formalism as it is often easier to
define possible states indirectly by defining possible actions.

A classical AT game-tree search algorithm typically works as follows: We begin
with a set of unsearched states consisting of the initial state (1). Iteratively, we
choose and remove a state from our unsearched state set, evaluate its utility,
generate possible future states, and add these to the unsearched state set. At
any time, the search algorithm has searched a portion of the search tree and may
modify its valuation of actions by propogating utilities up the tree. Since states

! When a state maps to an empty set, the state is said to be terminal.



can be repeated in the tree, a specific state at a position in the tree is called a
node. Different algorithms will vary in how they choose the next unsearched state.
Since most search trees cannot be searched exhaustively, different algorithms also
have different stopping conditions.

Although the minimaz algorithm can be used to evaluate a game search tree
(i-e. game tree), this process can be made significantly more efficient for zero-
sum games through a technique called alpha-beta pruning. During search, if one
can prove through zero-sum constraints that rational play will never lead to a
node, search from that node can be “pruned” (i.e. discontinued).

Since we assume a zero-sum game, we can have a single utility associated
with each node. One player (MAX) seeks to maximize this utility, and the other
(MIN) seeks to minimize it. Assume without loss of generality that at the initial
search node (or root), it is MAX’s turn. At each search node, we keep track of
two values a and 3. Along the path (i.e. sequence of actions) from the root to a
node, « is the best score for MAX, and (3 is the best score for MIN. Put another
way, play along that path guarantees a score of at least o and at most 5. At the
root node, these are —oo and oo respectively.

To compute MAX-Value(s, a, §):

1. If state s is terminal or triggers a terminating condition of search, then return
the utility of s.
2. For each legal action a of MAX in state s:
(a) Let state s’ be the result of action a in state s.
(b) Set a equal to the greater of @ and MIN-Value(s', o, 3).
(c) If a is greater than or equal to §, then “prune” search and return 3.
3. Return a.

To compute MIN-Value(s, a, 3):

1. If state s is terminal or triggers a terminating condition of search, then return
the utility of s.
2. For each legal action a of MIN in state s:
(a) Let state s’ be the result of action a in state s.
(b) Set 8 equal to the lesser of 8 and MAX-Value(s', a, ).
(c) If B is less than or equal to «, then “prune” search and return a.
3. Return g.

A player MAX will take the action corresponding to the successor state with
the greatest MIN-Value. Although other terminating conditions of search are
often employed, we will use the simplest throughout: a limitation on the depth
of search — the maximum length of an action sequence. The number of possible
actions in a state is called the breadth of search.

This discrete search algorithm assumes a discrete dynamical system. For any
state, there are a finite number of actions which result in a finite number of
successor states. In order to apply such an algorithm to a continuous or hybrid
dynamical system, we must first approximate the system as a discrete system
through a process called discretization.



optimization interval

\\\ @ = evaluated point
‘| X = candidate point

\
\
\

Nt target
o) o vaiue

next point to evaluate

(a) DASAT Hybrid System Game (b) Parabolic Information-Based
Optimization

Fig. 1.

There are two types of discretization which must occur: (1) discretization of
actions, and (2) discretization of action timing. For (1), it is common practice to
discretize a continuum of possible control inputs with a uniform sampling. For
(2), it is common to pick a fixed time interval At for which the control inputs
hold as simulation advances to the next successor state.

It is often not obvious what constitutes a good decision for either type of
discretization. Worse yet, by committing to such a discretization before search,
it is not possible to reap the benefit of information obtained during search to
form a better discretization. In the next section, we describe a more general
game formalism which assumes a fixed (static) discretization for action timing,
but allows an adaptive (dynamic) discretization for control actions.

3 DASAT Hybrid System Game

In this section, we present a formalism for hybrid system games called DASAT
hybrid system games, and a subclass of such games that can be searched with our
new techniques. DASAT stands for Dynamic Action discretization with Static
Action Timing discretization.

Formally, a DASAT hybrid system game is defined as a 7-tuple

{Sa S0, A7p7 l7m7 d}
where

— S is the hybrid state space[1] with a finite number of finite discrete variable
domains, and a finite-dimensional continuous space,
— 8o € S is the initial state,



— Aisafinite set {44,..., A} of continuous action regions indexed {1,...,n},

— p is the number of players,

—1:Sx{1,...,p} = A’ where A’ C A is a legal move function mapping from
a state and player number to a finite set of legal continuous action regions
which contain points representing all legal actions that may be executed in
that state by that player,

—m: S xaPl - S x NP is a move function mapping from a state and simul-
taneous player actions (region index, region point pairs) to a resulting state
and the utility of the combined actions for each player,

—d:S — S xR is a delay function mapping from a state to the resulting
state and the utility of the trajectory segment for each player. This delay
governs the hybrid evolution of the system through time between moves.

This formalism is visualized in Figure 1(a). For any state s in our hybrid
state space S, there are a finite number of action regions {4;,...,4,}. Each
region can be thought of as a closed, contiguous set of allowable control input
vectors. Let a be an action (e.g. a single control input vector) from one of these
action regions. The move function maps s and a to s', applying an instantaneous
transition to system state, and computing the associated change in utility. The
delay function maps s’ to s”, simulating the evolution of the hybrid system
over some time interval At > 0. Overall, the system state evolves through both
moments of action (moves) and periods of inaction (delays).

The total utility of any finite trajectory is computed as the sum of the trajec-
tory move and delay utilities. In this time-invariant formalism, time can easily
be encoded in a continuous clock variable, and time variant behavior can thus
be easily achieved.

This formalism is very general in both its dynamics and game-theoretical
form. Indeed, in the latter respect, it is too general for the application of alpha-
beta search. Two restrictions are necessary to define a class of DASAT hybrid
system games for which the techniques of this paper are applicable: (1) The
zero-sum constraint of the player score function must be preserved in the move
and delay functions, and (2) a single player must be allowed to move at a time.
For (2), we can include the current player in the state, and have the legal move
function only allow a “null” move for all other players. An example of these
restrictions in practice is presented in the following section.

4 Homicidal Chauffeur Game Variant

In this section we present a variant of the homicidal chauffeur game[2,3]. The
differences in this variation are (1) fixed time delays between actions, (2) a
different cost function, and (3) game theoretic information structure (i.e. who
knows what when). Regarding (1), the homicidal chauffeur game is a differential
game[2]. In our variant, we have a fixed discretization of action timing. Regard-
ing (2), the homicidal chauffeur game has only two player utilities representing
capture and non-capture. In our variant, utility is calculated by integrating in-
verse distance of a trajectory to the origin (pursuer) over time. Regarding (3),



the homicidal Chauffeur game as a differential game has both players acting at
once. In our variant, players take actions in turn with complete knowledge of
previous actions.

The homicidal chauffeur game is a pursuit-evasion game in which a chauffeur
in a circular car with limited turning radius seeks to hit a slower pedestrian
who can change direction instantly. Speed and maneuverability are asymmetric.
In our variant, the object of the pursuer/evader is to minimize/maximize their
inverse distance integrated over time.

The pursuer can choose a value u! € [—1,1] where -1 and 1 are extreme
left and right turns respectively. The evader chooses any angle u?. The pursuer
and evader travel at constant velocities 1 and vy respectively. Let us assume an
(z1,22) coordinate frame relative to the pursuer. The pursuer faces the positive
zo-axis. Then the system evolves according to:

&1 = —u'zo + vosin(u?), #y = =14 u'z; + vaocos(u?)

For our information structure, we assume that the pursuer chooses u' im-
mediately after the evader chooses u? with knowledge of that choice. There is
then a finite, positive delay At before the evader again chooses u2. The system
evolution is piecewise continuous with discrete controller transitions.

This game is not as general as it could be. In particular, we could have mul-
tiple ranges of control inputs and hybrid rather than continuous dynamics. This
problem was chosen because (1) it is well known, and (2) it is easily visualizable
to validate results.

Within our formalism, the hybrid states consists of two continuous variables
(z1 and z2) and one discrete variable (p, the current player). Continuous action
regions are A; = [—1,1], Ay = [—7, 7], and A3 is a “null move” singleton set with
any value. The legal move function maps all states and player i to the singleton
action region set A; when the current player is ¢, and maps to Az otherwise.
Suppose i is the current player: The move function changes u’ according to a;
(the 7th action of the action vector). The move function also changes the current
player and has no utility change. The delay function simulates the system forward
At; time units. The delay function also has zero-sum utility change (positive for
pursuer, negative for evader) according to the inverse distance between players
integrated over At;. After the evader acts and before the pursuer acts we have
no delay (At¢; = 0). After the pursuer acts and before the evader acts we have a
fixed positive Aty which was set to 0.1.

We now turn our attention to a new class of algorithms suited to this subclass
of DASAT hybrid system games.

5 DASAT Alpha-Beta Search

In our new approach to search, we redefine MAX-Value and MIN-Value as follows
(changes underlined):
To compute MAX-Value(s, a, 8):



1. If state s is terminal or triggers a terminating condition of search, then return
the utility of the trajectory to s.
2. While we have not yet reached our breadth limit:

(a) Choose a continuous action region A; and a legal action a € A; of
MAX in state s.

(b) Let state s’ be the result of the move function of state s and action a.

(c) Let state s” be the result of the delay function of state s'.

(d) Set o equal to the greater of o and MIN-Value(s”, a, f).

(e) If « is greater than or equal to 3, then “prune” search and return S.

3. Return a.
To compute MIN-Value(s, a, §):

1. If state s is terminal or triggers a terminating condition of search, then return
the utility of the trajectory to s.
2. While we have not yet reached our breadth limit:

(a) Choose a continuous action region A; and a legal action a € A; of
MIN in state s.

(b) Let state s’ be the result of the move function of state s and action a.

(c) Let state s" be the result of the delay function of state s'.

(d) Set 8 equal to the lesser of 8 and MAX-Value(s”, a, ).

(e) If B is less than or equal to «, then “prune” search and return a.

3. Return S.

Note that there are essentially three major differences between this search and
classical alpha-beta search. The first is a result of our formalism for computing
utility changes through discrete actions and simulation delays. The second is
a result of the fact that there are potentially infinite actions we could choose.
The italicized step is the dynamic action discretization step of DASAT Alpha-
Beta Search. The third is a result of our alternate formalism for generating state
successors in search. We first instantaneously apply an action (e.g. change a
control input). We then simulate the effect on the system for a duration fixed
by our delay function.

Finally, we note that since this is a two-player zero-sum game, we can simply
use the first element of the DASAT game utility vector. Thus player 1 is MAX,
and player 2 is MIN.

In this framework, there are many possible techniques for dynamic discretiza-
tion. The first technique we use for comparison is to dynamically choose a fixed
uniform sampling. This serves as a control to tell us what we gain by performing
sampling dynamically. The second technique we use is a random sampling. As we
shall see, this simple stochastic technique has its advantages as well. The third
technique relies on a class of maximum-likelihood-based optimization techniques
called information-based optimization. We describe this type of optimization in
the next section.



6 Information-Based Optimization

We defer the details of our information-based optimization algorithm to [4] and
provide only an overview for brevity. Information-based optimization is a type
of global optimization that seeks to achieve a target value by, at each step of
optimization, evaluating the point most likely to have that value given previous
evaluations.

We provide a brief sketch of this optimization in Figure 1(b). Given a set
of evaluated points, we wish to choose the next point for evaluation which has
greatest likelihood of having our desired target value. In our parabolic variant,
we assume that (1) the unknown function is most likely piecewise parabolic, and
(2) smaller magnitude constants for quadratic terms are more likely than greater
magnitude constants.

Then for single-dimensional functions, we may compute candidate points
between prior evaluated points by finding the intersections of the target line and
tangential parabolas which pass through adjacent evaluated points. We then
choose the candidate point associated with the parabola having a quadratic
term of minimum magnitude. In Figure 1(b), we prefer the left candidate as it
is associated with the least “steep” parabola. For single-dimensional functions,
interval end points are initially chosen.

7 Information-Based Alpha-Beta Search

In Section 5, we noted that there are a variety of ways one can dynamically
choose which actions to evaluate from a continuum of actions. Commonly, one
performs a static uniform discretization. Information-Based Alpha-Beta Search
chooses the next action according to information-based optimization, where (1)
actions are evaluated by the MAX- or MIN-Values of resulting states, and (2)
the target value for optimization is the pruning value § or a.

Information-based optimization chooses an action to evaluate. A subtree
search takes place to evaluate the quality of this action, which is then used
in the selection of the next action, and so forth. At every node, Information-
Based Alpha-Beta Search uses prior subtree searches from that node to choose
the next action most likely to lead to pruning. MAX (MIN) seeks actions which
will most-likely have a score of 8 (@), the pruning limit. Initially, this pruning
limit is infinite and Information-Based Alpha-Beta Search always chooses the
middle of the largest gap between evaluated points.

Since an optimization is performed at each search node, there is consider-
able computational overhead in this approach. However, we will see in the next
section that under certain circumstances, this computationally intensive process
is compensated for by the quality of the sampling and/or the quality of the
pruning.



8 Results

The following empirical study supports conclusions of the initial empirical study
of Information-Based Alpha-Beta Search in the context of magnetic levitation
control [5, ch. 4].

The most important parameters of search are search breadth (b) and depth
(d) as the computational cost is bounded above by a constant times b?. Each
experiment varies either breadth or depth of search.

Since there are many possible problem parameters and initial conditions, we
arbitrarily chose the following fixed parameters for our experimentation: At =
0.1, B3 = 0.34, and v, = 0.82. In all trials, initial z; and z» values were chosen
on a uniform 20 x 20 grid from [—2, —2] to [2,2]. For each initial state (z1, z2)
we play two algorithms against each other and compare their resulting scores,
times for computation, and number of nodes expanded. More specifically, one
algorithm as the evader performs a search, and takes the action recommended
by search. The next algorithm then does the same as the pursuer, and this is
repeated for fours turns of play. We then repeat the trial with the algorithms
switched.

In this empirical study, means and 90% confidence intervals for the means
were computed with 10000 bootstrap resamples. Graphs for experiments where
breadth or depth are varied have circles representing resampled means and lines
representing 90% confidence intervals for the means.

The first important parameter we vary is search breadth, i.e. the number of
actions we sample at each node. We hold search depth fixed at 6.

Varying search breadth and comparing Information-Based Alpha-Beta Search
with DASAT alpha-beta search with random discretization, we generally see a
time versus score tradeoff. See Figure 2. Information-based discretization con-
sistently outscores random discretization as we would expect. The magnitude
of the score difference lessens with increase in search breadth. Optimization is
more costly per node than random selection, but random selection must search
nearly exponentially more nodes with the increase in breadth. While random dis-
cretization performs faster for small breadths, there is no statistically significant
difference for larger breadths.

Varying search breadth and comparing Information-Based Alpha-Beta Search
with DASAT alpha-beta search with uniform discretization, we generally see the
same scores but with nearly exponential savings in time as the breadth increases.
See Figure 3. For almost all breadths, we see no significant statistical difference in
score. However, information-based discretization results in significantly greater
pruning. This pruning more than compensates for the computational cost of the
optimization, and yields nearly exponential savings in time with the increase in
search breadth.

To understand why information-based and uniform discretizations yield such
similar scores, we review the behavior of information-based optimization at the

2 The choice of B with respect to vs is only significant in the context of the original
homicidal chauffeur game.



x10° Score Differences - infobased vs. random Time Differences — infobased vs, random

150

i | %M

Score Difference
T
mSec
e
o

_so|

L L L L L , -100E L L
4 6 8 14 16 4 6 8

10 10
Search Breadth b Search Breadth b

Fig. 2. Score and time difference confidence intervals for information-based versus ran-
dom discretization with varying search breadth

x10° Score Differences - infobased vs. uniform
Time Differences - infobased vs. uniform

o

6 o

-1000 ¢

2000

Score Difference
~
T
o

3000

-4000-

-4 ~5000 - %
8 12

o
T
°
o
- s
N
—
e
- e
mSec
DN

14 16 4 6 8

10 10
Search Breadth b Search Breadth b

Fig. 3. Score and time difference confidence intervals for information-based versus uni-
form discretization with varying search breadth

start of search. Search starts with @ = —oo and 8 = oo, resulting in a sampling
where the next point is always chosen from the middle of the largest gap between
previous points. The sampled points are then identical for both methods when
b=2,3,5,9,17,...,2¢ + 1 where i is a non-negative integer. At other times, the
resulting sampling is not uniform and thus scores are somewhat worse (without
statistical significance in most cases).

A simple modification we could make to our algorithm is to choose a uni-
form discretization with an information-based ordering of evaluations whenever
a = —o0 and 8 = o0o. A more interesting and potentially significant question
would be whether the maximum-likelihood decision process of information-based
optimization could efficiently make use of our knowledge of breadth b. Should
our choice of the next point for evaluation seek also to increase the likelihood of
pruning in future iterations?



x10° Score Differences - infobased vs. random Time Differences - infobased vs. random

351 2000

1500

1000

Score Difference
e
mSec

o [°] o o o

5 7 8 9 1 2 3 4 5
Search Depth d Search Depth d

Fig. 4. Score and time difference confidence intervals for information-based versus ran-
dom discretization with varying search depth

The next important parameter we vary is search depth, i.e. the length of the
action sequences (and thus the time horizon) we consider in search. We hold
search breadth fixed at 10.

Varying search depth and comparing Information-Based Alpha-Beta Search
with DASAT alpha-beta search with random discretization, we again generally
see a time versus score tradeoff. See Figure 4. Information-based discretization
consistently outscores random discretization as we would expect. The difference
in score increases with depth. We do observe an exponential decrease in the
relative number of nodes searched as we increase depth using information-based
discretization. However, the quality of the pruning does not compensate for the
computational cost of optimization, and the overall run-time difference increases
nearly exponentially for higher search depths.

In summary, we observe consistently better scores from information-based
discretization, but random discretization appears to be significantly more effi-
cient for higher search depths. One could imagine an interesting hybrid of the
two, where search at greater depths is performed stochastically and more crucial
decisions shallower in search are performed with information-based optimization.

Varying search depth and comparing Information-Based Alpha-Beta Search
with DASAT alpha-beta search with uniform discretization, we again generally
see the same scores but with nearly exponential savings in time as the depth
increases. See Figure 5. For almost all depths, we see no significant statistical
difference in score. However, as we increase search depth, we observe a clear
exponential decrease in the relative number of nodes searched. This pruning
more than compensates for the computational cost of the optimization, and again
yields nearly exponential savings in time with the increase in search depth.

In summary, information-based discretization, when compared to random
discretization yields substantially better decisions but at greater computational
cost. Information-based discretization, when compared to uniform discretization,



x10™ Score Differences - infobased vs. uniform
Time Differences - infobased vs. uniform

oF o o o °
o

-2000F

i byt - <’

-8000

Score Difference.
! |
mSec

-10000F

-12000F

-14000F

-16000(

-18000

5 5 6
Search Depth d Search Depth d

Fig. 5. Score and time difference confidence intervals for information-based versus uni-
form discretization with varying search depth

yields similar quality of decisions but with significantly lesser computational cost.
This is consistent with the previous empirical study of [5].

We also experimented with varying At. Results showed that control with
lookahead significantly outperforms greedy control. The policy leads to one of
two symmetric equilibria in the upper quadrants where the pursuer’s maximal
turn affects no change in relative position.

9 Discussion

As this is but one empirical study, it is worth taking some time to help the
reader understand what to expect for significantly different games. Even without
empirical study, we can sketch the gross effects on computational complexity.

Varying number of players: As we increase the number of players while
holding the number of turns per player fixed, we linearly increase search depth,
which ezponentially increases search time.

Varying time horizon: As we increase the time horizon while holding the
frequency of actions constant, we also linearly increase search depth, which ez-
ponentially increases search time.

Varying system dynamics: Our homicidal chauffeur example has con-
tinuous dynamics, but we could just as well have hybrid dynamics. However,
different dynamics results in different computational complexity for simulation.
Simulation run-time has a proportional effect on search run-time.

Varying system dimensionality: The dimensionality of a hybrid state
has no bearing on the complexity of search except through its effect on the
computational complexity of simulation.

Varying control input dimensionality: If we increase the number of con-
trol inputs, then to keep the sampling density constant, the number of samples
would need to increase exponentially. Thus the breadth b and run-time of search
would grow exponentially.



One common misunderstanding of advanced search techniques is the skill re-
quired to use them. There is an important distinction between search algorithms
and search problems. Indeed, none of the search algorithm code of [5] needed
modification. Rather, we simply redefined those elements corresponding to our
DASAT hybrid system game definition. This has an important ramification: A
change in the game definition results in change in the behavior recommended by
search. Thus, to the extent that search is fast and efficient, search enables model-
based control where control is based on an internal model of system behavior and
adapts control policy as the model changes.

10 Conclusions

The classical formalism for game-tree search assumes that the game is a discrete
system. In order to apply such techniques to continuous or hybrid systems, the
user must first approximate system dynamics by performing both action and
action timing discretizations a priori.

We have extended the game formalism to allow both (1) dynamic sampling
from closed, contiguous sets of allowable actions (i.e. control vectors) during
search, and (2) general hybrid system dynamics. We have also introduced a
new algorithm called Information-Based Alpha-Beta Search that works with a
subclass of these games. This empirical study and that of [5, ch. 4] show that
for two such games, Information-Based Alpha-Beta Search recommends control
actions similar to that of uniform discretization, but at considerable savings in
computational time.

Acknowledgements

We wish to thank Claire Tomlin for the problem suggestion, and Kim and Clif
Presser for simplification of formula for our parabolic variant.

References

1. Michael S. Branicky. Studies in Hybrid Systems: modeling, analysis, and control.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1995.

2. Rufus Isaacs. Differential Games, 2nd ed. Kruger Publishing Company, Huntington,
NY, USA, 1975. First edition: Wiley, NY, 1965.

3. A. W. Merz. The Homicidal Chauffeur — a differential game. PhD thesis, Stanford
University, Palo Alto, California, 1971. Report No. 94305, Department of Aeronau-
tics and Astronautics.

4. Todd W. Neller. Information-based optimization approaches to dynamical sys-
tem safety verification. In Thomas A. Henzinger and Shankar Sastry, editors,
LNCS 1386: Hybrid Systems: computation and control, First International Work-
shop, HSCC’98, Proceedings, pages 346—359. Springer, Berlin, 1998.

5. Todd W. Neller. Simulation-Based Search for Hybrid System Control and Anal-
ysis. PhD thesis, Stanford University, Palo Alto, California, USA, June 2000.
available as Stanford Knowledge Systems Laboratory technical report KSL-00-15
at www.ksl.stanford.edu.



