
SIMULATION-BASED SEARCH FOR HYBRID SYSTEMCONTROL AND ANALYSIS
A DISSERTATIONSUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCEAND THE COMMITTEE ON GRADUATE STUDIESOF STANFORD UNIVERSITYIN PARTIAL FULFILLMENT OF THE REQUIREMENTSFOR THE DEGREE OFDOCTOR OF PHILOSOPHY
Todd William NellerJune 2000



 Copyright 2000 by Todd William NellerAll Rights Reserved

ii



I ertify that I have read this dissertation and that inmy opinion it is fully adequate, in sope and quality, asa dissertation for the degree of Dotor of Philosophy.Rihard E. Fikes(Prinipal Adviser)
I ertify that I have read this dissertation and that inmy opinion it is fully adequate, in sope and quality, asa dissertation for the degree of Dotor of Philosophy.Claire J. TomlinDepartment of Aeronautis and Astronautis
I ertify that I have read this dissertation and that inmy opinion it is fully adequate, in sope and quality, asa dissertation for the degree of Dotor of Philosophy.Feng ZhaoXerox Palo Alto Researh Center
Approved for the University Committee on GraduateStudies:

iii



PrefaeThis dissertation explores new algorithmi approahes to simulation-based optimiza-tion, game-tree searh, and tree searh for the ontrol and analysis of hybrid systems.Hybrid Systems are systems that evolve with both disrete and ontinuous behaviors.Examples of hybrid systems inlude diverse mode-swithing systems suh as thosewe have used as fous problems: stepper motors, magneti levitation units, and sub-marine detetion avoidane senarios. For hybrid systems with omplex dynamis,the designer may have little other than simulation as a tool to detet design awsor inform o�ine or real-time ontrol. In approahing ontrol and analysis of suhsystems, we thus limit ourselves to a blak-box simulation of the system, assumingas little as possible about the underlying dynamis and extending various types ofsearh algorithms to treat these diÆult general ases.Chapter 1 provides the reader with a more detailed overview, a summary of on-tributions, bakground reading, and hapter dependenies.Chapter 2 presents a stepper motor ontrol design problem where the designerwishes to use simulation to eÆiently detet rare stall senarios in the spae of pos-sible system parameters and initial states if suh senarios exist. A survey of globaloptimization tehniques and extensions of suh tehniques are made, and we disoverthe importane of novel information-based and multi-level optimization methods.Chapters 3{6 fous on game-tree searh and tree searh problems where a series ofations must be hosen under di�erent assumptions about the existene of a given a-tion or ation timing disretization. If the searh algorithm is given an ation or ationtiming disretization, we say that the searh algorithm has \stati ation disretiza-tion" or \stati ation timing disretization" respetively. If the searh algorithm isiv



not given an ation or ation timing disretization, we say the searh algorithm has\dynami ation disretization" or \dynami ation timing disretization" respe-tively. Thus various assumptions about whether or not either disretization is givende�ne four quadrants: Ation TimingDisretizationStati DynamiAtion Stati SASAT SADATDisretization Dynami DASAT DADATThe aronyms in eah quadrant are used in this dissertation to keep trak of theseunderlying assumptions about ation and ation timing disretization.Chapter 3, SASAT game-tree searh, presents a magneti levitation ontrol prob-lem as an adversarial game for the purpose of robust ontrol synthesis. We explorethe use of a game-graph (augmented ell-map) approximation and alpha-beta pruningtehnique for fast adaptive online ontrol.Chapter 4, DASAT game-tree searh, ontinues with the magneti levitation on-trol problem and instead fouses on the issue of ation disretization for game-treesearh. A novel appliation of information-based optimization to alpha-beta searhis presented.Chapter 5, SADAT tree searh, presents a submarine detetion avoidane prob-lem as a solitaire game or searh for the purpose of fast, real-time tatial planningassistane. Assuming disretized ations, we fous on the problem of ation timingdisretization. New iterative re�nement tehniques and a variant of best-�rst searhare presented.Chapter 6, DADAT tree searh, ontinues with the submarine detetion avoidaneproblem and removes the assumption of disretized ations. Augmenting the algo-rithms of the previous hapter, we explore random, information-based, and disperseddynami disretization of ations in searh.
v
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Chapter 1Introdution
1.1 MotivationThis dissertation explores new algorithmi approahes to simulation-based optimiza-tion, game-tree searh, and tree searh for the ontrol and analysis of hybrid systems.Hybrid Systems are systems that evolve with both disrete and ontinuous behaviors.Examples of hybrid systems inlude diverse mode-swithing systems suh as thosewe have used as fous problems: stepper motors, magneti levitation units, and sub-marine detetion avoidane senarios. For hybrid systems with omplex dynamis,the designer may have little other than simulation as a tool to detet design awsor inform o�ine or real-time ontrol. In approahing ontrol and analysis of suhsystems, we thus limit ourselves to a blak-box simulation of the system, assumingas little as possible about the underlying dynamis and extending various types ofsearh algorithms to treat these diÆult general ases.In fat, the system dynamis need not inlude both ontinuous and disretehanges. For optimization, we are interested in systems that tend to have similarbehavior for similar initial onditions. For game-tree searh and searh, we are in-terested in systems for whih simulation and ontrol ations an be used to explorebranhing possibilities of system evolution in order to inform intelligent ontrol ation.For eah problem area, a representative problem was hosen to fous our work.For global optimization, Chapter 2 presents a stepper motor ontrol design problem1



CHAPTER 1. INTRODUCTION 2where the designer wishes to use simulation to eÆiently detet rare stall senarios inthe spae of possible system parameters and initial states if suh senarios exist. Thestepper motor system is hybrid in the sense that the system evolves with pieewiseontinuous intervals separated by sheduled oil voltage hanges modeled as disreteevents.For game-tree searh, Chapter 3 presents a magneti levitation ontrol problemas an adversarial game for the purpose of robust ontrol synthesis. The magnetilevitation system is hybrid in the sense that the system evolves with pieewise on-tinuous intervals separated by ontrolled input hanges modeled as disrete events.Both the stepper motor and magneti levitation systems are essentially ontinuoussystems with fast ontrolled hanges approximated as ourring instantaneously.For tree searh, Chapter 5 presents a submarine detetion avoidane problem as asolitaire game or searh for the purpose of fast, real-time tatial planning assistane.This problem is hybrid in the sense that the system evolves with pieewise ontinuousintervals separated by ontrolled and autonomous disrete events1. For a thoroughreview and uni�ation of hybrid system models, see Braniky's dissertation[5℄.In eah ase, we have sought to avoid use of omplex problem-domain-spei�knowledge. One an often trade o� generality for performane through the use ofdomain-spei� knowledge. As we formalize new problems and take �rst steps toaddress them in this dissertation, we take are to minimize the assumed knowledgeof our problem domains so that the algorithms developed may serve as generallyappliable kernels from whih future advanes an grow.Eah of the following hapters begins with a formal de�nition of the problem ofinterest. We now plae these problems in perspetive with one another.1.2 Problem CharaterizationsIn Russell & Norvig's \Arti�ial Intelligene: a modern approah"[41℄, an agent-basedapproah to problem de�nition is used, where an agent maps perepts to ations1For this problem, ontrolled and autonomous disrete events are hanges in submarine and shipheadings, speeds, and modes.



CHAPTER 1. INTRODUCTION 3within a dynamial system. A PAGE desription of an agent inludes four basiomponents:� Perepts - what the agent is able to sense about its environment,� Ations - what the agent is able to a�et in its environment,� Goals - what the agent wishes to ahieve in its environment, and� Environment - a desription of the environment itself.From an optimal ontrol viewpoint, this would be like taking a ontroller-entriapproah to problem de�nition with eah of these omponents respetively orre-sponding to ontroller inputs, ontrollers outputs, performane index2, and plant.Additionally, environment desriptions make the following distintions:� Aessible vs. Inaessible - If the agent senses the entire state of the envi-ronment relevant to ahieving its goal, the environment is aessible. Otherwiseit is inaessible. For example, hess as a game of perfet information is aes-sible, whereas poker as a game of imperfet information is inaessible.� Deterministi vs. Nondeterministi - If the next state of the environmentis ompletely determined by the urrent state and the ations of the agents, theenvironment is deterministi. Otherwise, it is nondeterministi. For example,hess as a game without hane is deterministi, whereas poker as a game ofhane is nondeterministi. Suh (non)determinism is usually de�ned with re-spet to the agent's perspetive. From the perspetive of poker playing agents,ards drawn are not determined by the agents themselves and are a soure ofnondeterminism in game play.� Episodi vs. Nonepisodi - If the agent's experiene in the environment anbe divided into separate \episodes" (i.e. a single mapping from perepts to2\Performane index" may also be alled \objetive funtion" or \utility funtion" in otherontrol ontexts.



CHAPTER 1. INTRODUCTION 4ations) whih have no inuene on the utility of ations in all other episodes,the environment is episodi. Otherwise, it is nonepisodi. The single-shot hanegame of rok-sissors-paper is episodi, whereas the omplex sequential natureof hess is nonepisodi.� Stati vs. Dynami - If the environment annot hange while the agent isdeliberating, the environment is stati. Otherwise, the environment is dynami.Chess is stati3, whereas baseball is dynami.� Disrete vs. Continuous - If there are a limited number of distint pereptsand ations, then the environment is disrete. Otherwise, it is ontinuous. Withenumerable board positions, hess is disrete, whereas baseball is ontinuous.We now haraterize eah of our problems in turn and disuss further partiularsof eah.1.2.1 Simulation-based Global Optimization for Initial SafetyRefutation of Hybrid SystemsFor this problem, we are interested in deteting design aws within an initial timeperiod of simulation. Given a set of possible initial onditions (possible system pa-rameters and initial states), we wish to know if a prede�ned ontroller remains withina desired set of \safe" states for an initial time period. We all this property \initialsafety". Sine the system is entirely prede�ned with no degrees of freedom for dei-sion making, the ontroller is in this ase a degenerate ase of an agent, with neitherperepts nor ations whih an be used to deliberate about or a�et ahievement ofthe goal within the environment.However, the task of refuting initial safety presents a more interesting study. APAGE desription of the initial safety refutation agent is as follows:� Perepts - The agent pereives the urrent possible initial ondition under on-sideration, and the evaluated heuristi measure of relative safety of a trajetory3Or else the opponent's hand gets slapped for playing out of turn.



CHAPTER 1. INTRODUCTION 5simulated from that initial ondition.� Ations - The agent hooses the next possible initial ondition to onsider andevaluates the heuristi measure of relative safety of the trajetory simulatedfrom this initial ondition.� Goals - The agent wishes to, with minimal ations, �nd an initial ondition forwhih simulation yields a trajetory with an unsafe state, thus refuting initialsafety of the system.� Environment - An o�ine simulation testing environment whih is:{ Aessible - The agent may obtain a heuristi evaluation of the relativesafety of any possible initial ondition.{ Deterministi - Simulation and evaluation of the simulation is determin-isti with respet to initial onditions.{ Nonepisodi - Sine the agent seeks to minimize the number of ationsneeded for refutation (if a refutation exists), eah ation a�ets the per-formane overall.{ Stati - The testing environment never hanges.{ Continuous - Pereived evaluations an inlude all non-negative real num-bers. The range of possible ations is over a ontinuous spae of possiblesystem parameters and initial states.One might wonder why we have the agent seek to minimize the number of ationsrather than time. The reason is that we make the assumption that the omputa-tional ost of simulation and evaluation dominates the ost of the agent deliberation.In doing so, we approximate the goal of minimizing overall omputational time byminimizing the number of alls to the most omputationally expensive proedure.We did not work with initial ondition spaes with more than 6 dimensions. Suhproblems are often addressed by performing suessive searhes in lower-dimensionalsubspaes.



CHAPTER 1. INTRODUCTION 61.2.2 Simulation-based Game-Tree Searh for Robust Con-trol Synthesis of Hybrid SystemsControl theorists have long posed ontrol problems as games in order to treat multi-agent ontrol problems (e.g. pursuit-evasion games) or robust ontrol problems (e.g.where the adversary represents worst ase external perturbation, error, et.)[1, 7℄. Weharaterize these problems from the perspetive of the �rst-player ontrol agent asfollows:� Perepts - The agent pereives the urrent state of the hybrid system.� Ations - In Chapter 3, the agent hooses from a disrete set of possible ations.In Chapter 4, the agent hooses from a set of possible losed, ontinuous ationparameter regions.� Goals - The agent wishes to maximize its sore (utility) with respet to a giventime horizon.� Environment - A multi-agent hybrid dynamial system whih is:{ Aessible - The agent an pereive all hybrid state variables relevant toahieving its goal.{ Deterministi - The ations of the players ompletely determine the dy-namis of the system.{ Nonepisodi - Eah ation an a�et the system dynamis thus a�etingthe sore/utility of future ations.{ Dynami - While a player is deliberating, another player an at andhange the environment.4{ Continuous - Both perepts (all state variables) and ations (hosen fromation parameter regions) an be ontinuous.4In Chapters 3 and 4, we simplify the problem by approximating the dynami game as onein whih the players take turns at �xed times. We approah the dynami problem with a statiapproximation of the problem.



CHAPTER 1. INTRODUCTION 7Now that we have haraterized the general features of the problem, it is importantto haraterize problems for whih game-tree searh is a suitable approah. Beyondthe ommonalities we have disussed, good game-tree searh appliations also shareinformational/topologial harateristis. In searhing possible lines of play fromthe urrent state, the game-tree formed must ontain suÆient information within alimited depth, given a low branhing fator, to indiate intelligent ation under playermodeling assumptions:1. Information - Like any proess whih works with information to form onlu-sions, one an expet the adage \garbage in, garbage out" to hold. Whetherin the form of a utility funtion or a heuristi funtion estimating utility, onemust have a means of evaluating the desirability of one sequene of moves overanother. While suh a funtion need not be perfet, poor information will leadto poor deisions. At the other extreme, a perfet utility funtion obviates theneed for searh. If the expeted utility of performing a single move is perfetlyomputable, one need only look ahead one move. Game-tree searh is bettersuited for games whih bene�t from a ombination of lookahead and imperfetevaluation. Typially the expeted utility of a move sequene is omposed ofone or both of the following: (a) the utility of performing the sequene of ationsin the urrent state, and (b) an estimate of the utility of ations whih will behosen thereafter. A searh tehnique whih makes use of (a) only is said toexhibit \greedy" behavior.2. Searh Depth - Game-tree searh an be thought of as an optimization in thespae of move sequenes under player modeling assumptions (see (4)). Giventhat suh spaes an be vast for small, simple games, methods often assume thatsearh will over a small subset of move sequenes, generally biased towards theshortest sequenes. Often, suh subsets of ation sequenes will have no path,or no optimal path whih leads to a goal state (vitory). The time required toperform searh grows exponentially as O(bd), where b is the e�etive branhingfator of the tree, and d is the searh depth. Obviously, even for small branhingfators, game-tree searhes will only be suessful in domains where limited



CHAPTER 1. INTRODUCTION 8lookahead is suÆient to inform intelligent ation.3. Searh Breadth - For the same reason, high branhing fators an also rendersearh ine�etive. With players alternately plaing piees on a 19 � 19 grid,the game of Go provides a good example of how a high branhing fator anmake lookahead too omputationally expensive for e�etive use. Game-treesearh is best applied to games where branhing fator is not so high as toprevent suÆient lookahead to inform intelligent ation. For a ontinuous orhybrid game with in�nite possible moves de�ned by ontinuous ation parameterspaes, we an only sample a �nite number of moves. Feasibility of searh forapproahing suh problems depends on how well sampling an provide globalinformation about the quality of deisions.4. Player Modeling Assumptions - Rational game-play is based on player mod-eling assumptions. Although most game-theoreti researh is foused on opti-mal rational play, understanding of one's opponent allows better game play. Forinstane, one an play hess well assuming that one's opponent approximatesperfet rational play. However, if one knows that the opponent strongly favorsmaterial advantage, then one will do better to favor the strategy of sari�e.Game-tree searh tehniques usually have very simple player models whih areomputationally eÆient. The minimax assumption is an example.So information harateristis onerning (expeted) utility of moves and playermodeling is intertwined with topologial harateristi of searh-tree depth and breadth.Put simply, there must be suÆient information in the possibilities we an onsiderduring searh to make intelligent hoies. Beyond environmental harateristis, theseform the ore onsiderations for game-tree searh appliations.One �nal important note is the distintion between the e�et of the dimensional-ity of the state spae versus the e�et of the dimensionality of the ation parameterregions. As the dimensionality of the state spae inreases, the omputational om-plexity of simulation is a�eted. As the dimensionality of ation parameter regions



CHAPTER 1. INTRODUCTION 9inreases, the e�etive branhing fator of searh inreases exponentially to main-tain the same granularity of disretization5. So long as the system an be simulatedquikly, dimensionality of the state spae is not a onern for the omplexity of thesearh. Biologists have observed that omplex behaviors in organisms with manydegrees of freedom in movement arise from superposition of very simple signals ofvarying intensity[2℄. If one an hoose an appropriate low-dimensional parameter-ization of ation, searh has the potential to inform intelligent ation of omplexsystems.1.2.3 Simulation-Based Tree Searh for Real-Time ControlAssistane of Hybrid SystemsTree searh (or simply \searh") an be viewed as a speial solitaire ase of game-treesearh where there is only one player. The general hallenge is to �nd a sequene ofations whih either maximizes a sore/utility/payo�, minimizes a ost, or ahievesa desired state or set of states. We haraterize these problems from the perspetiveof the �rst-player ontrol agent as follows:� Perepts - The agent pereives the urrent state of the hybrid system.� Ations - In Chapter 5, the agent hooses from a disrete set of possible ations.In Chapter 6, the agent hooses from a set of possible losed, ontinuous ationparameter regions.� Goals - We treat multiple di�erent goals in this ontext whih take on someombination of (1) minimizing ost with respet to a given time horizon, and(2) ahieving a desired goal state or set of states. Methods are presented whihpursue (1) only, pursue (1) and stop if (2) is ahieved, and pursue (2) makingsure the ost is approximately optimal.� Environment - A multi-agent hybrid dynamial system whih is:5Granularity is de�ned with respet to Eulidean distane of sampled ation parameter points.



CHAPTER 1. INTRODUCTION 10{ Aessible - The agent an pereive all hybrid state variables relevant toahieving its goal.{ Deterministi - The ations of the agent ompletely determine the dy-namis of the system.{ Nonepisodi - Eah ation an a�et the system dynamis thus a�etingthe sore/utility of future ations.{ Stati - The agent is the sole a�etor of the environment.{ Continuous - Both perepts (all state variables) and ations (hosen fromation parameter regions) an be ontinuous.In Chapters 5 and 6, we no longer assume a given ation timing disretization. InChapter 5, we assume a given ation disretization. In Chapter 6, we do not.As a degenerate ase of game-tree searh, all preeding disussion of appliabilitybeyond environmental onerns is relevant exept for disussion onerning playermodeling assumptions. To reiterate, in searhing possible sequenes of ations fromthe urrent state, the tree searhed must ontain suÆient information within alimited depth, given a low branhing fator, to indiate intelligent ation.1.3 ContributionsIn this setion, we summarize the algorithmi ontributions of this researh. Beyondalgorithmi ontributions, Chapter 2 presents the de�nition of an initial safety prob-lem and a novel reformulation of the problem to a speialization of global optimization.Chapters 3{6 eah formally de�ne hybrid system games and searh problems underdi�ering assumptions of ation and ation timing disretizations.In Chapter 2, we present the �rst multidimensional approah to information-basedoptimization and the �rst loal optimization appliation of the information-basedoptimization approah. We generalized the multi-level loal optimization arhitetureof [10℄, and reated two information-based multi-level optimization methods whihwere the only algorithms we found able to reliably �nd design faults with our diÆult



CHAPTER 1. INTRODUCTION 11stepper motor test problem. In addition, we reated multi-level single-linkage[39℄variants whih assumed loal optimization determinism, used ordering heuristis, andperformed lazy objetive funtion evaluation. Finally, we made onstrained, epsilon-desent variants of quasi-Newton and Yuret's loal optimization[54℄.In Chapters 3{6, we develop game-tree searh and searh tehniques for ontrol ofhybrid systems. In ontrast to lassial ontrol tehniques suh as feedbak lineariza-tion, we do not onstrain our system to a spei� analytial form. For most of ouralgorithms, we assume that a system simulator is given. However, the augmented ell-map tehniques of Chapter 3 require only suÆient time-series data to approximatesystem dynamis. Furthermore, simulation an be approximated through the interpo-lation of time-series data (e.g. linear weighted regression from observed behavior[32℄).From this perspetive, our tehniques not only enable model-based ontrol, but alsoan be applied without expliit models given an appropriate means of interpolatingunseen system behavior.In Chapter 3, we present a new synthesis of ell-map and minimax methods for fastapproximate ontrol synthesis. We augmented a ell-map for multi-player evaluation,alling it a game-graph. We present two algorithms whih are respetively suited foro�ine and online derivation of optimal ontrol: Dynami Programming on a Game-Graph and Alpha-Beta Pruning on a Game-Graph.In Chapter 4, we show that alpha-beta searh naturally provides bounds for the ap-pliation of information-based optimization to the disretization of ontinuous ationparameter spaes. We all the resulting algorithm Information-Based Alpha-BetaSearh, and show empirially that it exeeds the good speed and pruning perfor-mane of random disretization while mathing the ontrol poliy quality of uniformdisretization.In Chapter 5, we provide several new searh approahes that do not rely on a given�xed ation timing disretization. Simple Iterative Re�nement suessively searhesfor a solution from the initial time to a �xed time horizon with inreasingly �nergranularity until a solution is found. SADAT Best-First Searh, the �rst systematisearh that dynamially generates new internal nodes, was shown to exhibit a tradeo�



CHAPTER 1. INTRODUCTION 12of speed versus solution quality. Iterative Re�nement with Strong Pruning, Node Or-dering, and Upper Bound yielded impressive performane given an appropriate timehorizon and a monotoni heuristi evaluation funtion. We next reated an epsilonvariant of Korf's Reursive Best-First Searh[25℄ and showed its extreme sensitivityto the input delay parameters. We onlude the hapter with a suessful synthesisof � - Reursive Best-First Searh with iterative re�nement ideas. Iterative Re�ne-ment with � - Reursive Best First Searh gave exellent results while behaving mostonsistently with respet to a wide range of initial delay parameters.In Chapter 6, we desribe the augmentation of the best new searhes from the pre-vious hapter with three forms of dynami disretization: random, information-based,and dispersed. The previous hapter relied on a human-designed disretization whihwas aligned with topologial features and objet motion of the test problem domain.We repeated experiments from Chapter 5 with the given heading disretizations ran-domly rotated. Dynami random disretization performed similarly to the randomlyrotated stati disretization. The omputational omplexity of information-based op-timization made it unsuitable for the real-time requirements of the test problem. Wedeveloped a ompromise between the speed of random disretization and the prini-pled approah of information-based disretization. The ompromise, alled disperseddisretization, yielded performane far exeeding that of the randomly rotated statidisretization.1.4 VisionWhile one might argue that ontrol and AI researhers interset in the study ofneural networks, it appears that there is no signi�ant intersetion between AI andontrol game researh. Construting a program to make a omputer play hess wellprimarily a�ets a philosophial hange in the world, neessitating new onlusionsabout the nature of intelligene. However, onstruting programs that think and atintelligently in ontinuous physial domains a�ets a material hange in the world,reating new opportunities for pratial appliation of omputers.We believe that the extension of disrete AI searh tehniques to hybrid ontrol



CHAPTER 1. INTRODUCTION 13domains an be of great bene�t to both AI and ontrol. By inreasing the ommonground of ommon goals, we hope to failitate the promising merge of AI disretesystem expertise and ontrol ontinuous system expertise. Appliations we envisionare desribed below.� Design fault detetion: While a disrete searh of a hybrid spae is not omplete,it an be an eÆient means of deteting faulty behaviors without needing toover-abstrat or over-approximate the model. We imagine a ontrol engineertaking soures of error or unertainty and modeling them as a player or playersthat seek to work against the ontroller. The game-tree searh would then bean eÆient means of searhing for the most signi�ant possible deviations fromintended behavior.� Robust ontrol: In treating possible disturbanes or errors as possible ationsof an adversarial player in a ontrol game, the objetive of optimal game playis equivalent to the objetive of robust ontrol. We will see two di�erent searhapproahes to robust ontrol in Chapters 3 and 4. In one approah, we ap-promixate the ontinuous system as a graph and apply various forms of dynamiprogramming to ompute optimal robust ontrol for the approximated system.In the other approah, we perform a tree searh of a sample of possible systemtrajetories. Sine the disrete game-tree searh of the ontinuous system isinomplete, it an only be onsidered an approximation of robust ontrol to theextent that we an prove properties about the most that our sampling will missin the ourse of searh.� Online ontrol: For appliations where safety is not ritial, the online use ofgame-tree searh or tree-searh for ontrol deisions may provide an immediate,approximate model-in-ontroller-out methodology for ontrol. Using simulationto projet the system state �t time units into the future, we searh from theprojeted point for �t time units and use the results of searh to inform ontrolation. Suh ontrollers would be espeially useful in appliations requiring ex-eption versatility in adaptive ontrol. Even if one annot parameterize hanges



CHAPTER 1. INTRODUCTION 14in the model, one would need only hange the simulation and/or ost model inorder to adapt ontroller behavior to a new environment and/or goal.� Rapid prototyping: In the design stage, we also believe that tree searh (a soli-taire game without adversaries) an be used to provide a rough initial ontrolpoliy whih an provide valuable information to the designer. If the designrequirements are espeially demanding, a fast approximate solution an be ofbene�t as an indiation of what proven ontrol tehniques would be best ap-plied. For instane, a designer might be able to use a straightforward simulationof a omplex system (without need for diÆult abstration) to derive an ap-proximately optimal ontrol poliy. From analysis of the approximate ontrolpoliy, the designer might gain quik insight into the dynamis of the system,suh as state spae regions that exhibit signi�ant nonlinearities.Simulation is already a valuable tool in ontroller design validation. By providingintelligent means to perform direted simulation, we hope these tehniques will �ndtheir plae as powerful tools for ontrol engineers.1.5 Reading GuideThis dissertation assumes that the reader has an undergraduate-level bakground inComputer Siene, and has introdutory-level knowledge of the following areas:� Global Optimization - A good, brief introdution to the area an be foundin [38, Chapter 10℄. [19, 39, 40℄ provide a more thorough survey of modernmethods.� Game-Tree and Tree Searh - A good introdution to this area an be foundin [41, Chapters 3{5℄. In addition, the reader may want to read the relevantartile on reursive best-�rst searh[25℄.� Cell-Mapping Methods - The most basi ideas of [20℄ are suÆient to un-derstand Chapter 3.



CHAPTER 1. INTRODUCTION 15If the reader is interested in a partiular hapter, dependenies between haptersare shown in Figure 1.1.
Chapter 3: SASAT Game-Tree Search

Chapter 4: DASAT Game-Tree Search

Chapter 5: SADAT Tree Search

Chapter 6: DADAT Tree Search

Chapter 2: Information-Based Optimization

Figure 1.1: Chapter Dependenies



Chapter 2Heuristi Optimization for InitialSafety Refutation
2.1 IntrodutionGiven a simulated hybrid dynamial system S, a set of possible initial states I, anda set of \unsafe" states U , we wish to verify nonexistene of an S-trajetory from Ito U within tmax time units. We all this the initial safety problem. Suppose we aregiven an approximate measure of the relative safety of a trajetory. More spei�ally,let f be a funtion taking an initial state i as input, and evaluating the S trajetoryfrom i suh that f(i) = 0 if and only if the S-trajetory from i enters U within tmaxtime units, and f(i) > 0 otherwise. Then veri�ation of the initial safety probleman be transformed into the global optimization (GO) problem:mini2I (f(i)) ?> 0GO methods may therefore terminate when i is found suh that f(i) = 0. Giventhat f does not generally have an analyti form, we do not assume the availabilityof derivatives. Sine eah evaluation of f may require a omputationally expensivesimulation, we are partiularly interested in GO methods whih perform relatively fewevaluations of f . In this ontext, we ompare several original variants of Simulated16



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 17Annealing (SA) and Multi Level Single Linkage (MLSL) methods and assess theirsuitability for our purposes. We disuss the use of knowledge of f gained in theourse of GO, and onsider the extent to whih some GO methods assume speialproperties of the loal optimization (LO) proedures they use.Finally, we introdue the �rst multidimensional extension of information-basedoptimization and show global and loal appliations of information-based optimiza-tion in our multi-level loal optimization arhiteture. These latter ontributions areshown to be both (1) ompetitive with evaluation ounts of prominent global opti-mization tehniques, and (2) the most reliable means of �nding rare failure senariosfor the motivating problem desribed in the next setion.2.2 Stepper Motor Stall ProblemOur researh was largely motivated by the following safety veri�ation task: Givenbounds on the system parameters of a stepper motor (e.g. visous frition, inertialload), bounds on initial onditions (e.g. angular displaement and veloity), and anopen-loop motor aeleration ontrol, verify that no senario exists in whih the motorstalls. We model the motor's ontinuous dynamis using ODEs given in [26℄:_� = !_! = �iaNb sin(N�) + ibNb os(N�)�D sin(4N�)� Fv! � Fsign(!)� FgJl + Jm_ia = Va � iaR + !Nb sin(N�)L_ib = Vb � ibR� !Nb os(N�)Lwhere � and ! are motor shaft angular displaement and veloity, ia and ib are oil Aand B urrents, Va and Vb are oil A and B voltages, R and L are oil resistane andindutane, N is the number of rotor teeth, Nb is the maximum motor torque peramp, D is the maximum detent torque, Fv is the visous frition, F is the Coulombfrition, Fg is the gravitational torque load, and Jl and Jm are load and motor shaftinertia. For this system we lassify a stall as deviation of �N or more radians from the
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Figure 2.1: Simple Stepper Motor Stepping255 250 245 240 235 231 226 222 217 213 209 . . .205 201 197 193 189 185 182 178 175 171 168 . . .164 161 158 155 152 149 146 143 140 137 135 . . .132 129 127 124 122 120 117 115 113 110 108 . . .106 104 102 100 98 96 94 92 90 89 87 85Table 2.1: Stepper Motor Aeleration Tableurrent desired � equilibrium.The motor is stepped by reversing polarity of the oil voltages in alternation asshown in Figure 2.1.Changes to oil voltages our on suh a small time sale that their ontinuoussimulation is judged unneessary for modeling dynamis relevant to the veri�ationtask. Voltage hanges were therefore approximated as disrete events. Our aeler-ation ontrol is open-loop: At �xed intervals the motor is stepped aording to anaeleration table. The aeleration table is represented as a sequene of delays be-tween eah motor step. Eah delay is measured in ontroller \tiks" where 1 tik =2.9834e-5 se. The aeleration table is shown in Table 2.1.HyTeh[15, 16℄ is a model heker for linear hybrid systems. To be more preise,it proves safety of \geometrially linear" hybrid systems as opposed to \algebraiallylinear" hybrid systems. Geometrially linear hybrid systems have onstant ontinuousvariable derivatives. Thus, the set of reahable states an be omputed as a set ofonvex polyhedra using tehniques from omputational geometry. Algebraially linearhybrid systems have ODEs whih an be expressed in a linear algebrai form.



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 19In [17℄, Henzinger, Ho, and Wong-Toi suggest two approahes for reating linearapproximations of nonlinear hybrid systems: a lok translation and a rate transla-tion. HyTeh makes use of an automaton representation of a linear hybrid system.As one inreases the auray of the linear approximation, both lok and rate trans-lations explode the size of the automaton representation exponentially. An approxi-mation of our stepper motor system either (1) has too large a representation for theomputational omplexity of the underlying omputational geometri algorithms ofHyTeh, or (2) is too inaurate suh that a onservative approximation that boundsatual system behavior will always yield an \unsafe" verdit over the ourse of a longstepper motor simulation.So we �rst note that there is no apparent approximation of our system for thetools that are urrently available. Next, we note that our veri�ation is onernedwith a �xed initial time interval (i.e. during aeleration) and is therefore an initialsafety problem. Finally, we note that we an ompute minimum angular displaementfrom a stall state over all simulation states as a simple heuristi to numerially ratethe relative safety of safe trajetories. We an now ask, \For all possible systemparameters and initial states, are all simulation trajetories rated safe?" Put anotherway, \Is the minimum heuristi evaluation of all possible simulations greater thanzero?" If we an answer this optimization question positively, we have veri�ed safetyof our hybrid system.One ould argue that suh optimization is not veri�ation, that one annot ex-haustively simulate all possibilities and an therefore have no guarantees. One anonly use suh optimization for refutation. To this, we o�er two responses: First, if onehas additional knowledge of harateristis of one's heuristi evaluation funtion (e.g.Lipshitz onditions), then an intelligent optimization approah an utilize suh har-ateristis to guarantee a stritly positive minimum with suÆient evaluation (e.g. ofa global solution set for a Lipshitzian global optimization problem[36℄). The key isto provide a heuristi evaluation that indues a helpful searh landsape without itselfbeome overly burdensome omputationally. Seond, if one has no suh knowledgeabout the heuristi, the absene of veri�ation tehniques well-suited to non-trivialdynamis leaves good global optimization as the best assurane. Our desire is to



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 20develop an information-based GO method whih, when halted without �nding anunsafe trajetory, provides some measure of the thoroughness of its searh.This said, we have endeavored to study a number of representative global opti-mization tehniques in order to assess their suitability to our purpose and point theway towards future innovation.2.3 Algorithms and test problemsIn this setion, we desribe the global optimization (GO) algorithms used in thisstudy, the loal optimization proedures used by them, and the test funtions tobe minimized. Author-supplied default settings were used for GO algorithms whenpossible. Otherwise, reasonable parameters were held onstant throughout testing.Sine our goal is to perform a omputationally expensive optimization, we woulddesire an algorithm whih reliably and eÆiently gives the desired result withouttuning. Experiened users of suh algorithms applying problem- and domain-spei�knowledge to the hoie of options and parameters ould expet to yield better results.The �rst set of algorithms we onsider are variants of simulated annealing (SA) [29,22℄. SA algorithms are theoretially guaranteed to �nd the global minimum of a fun-tion provided that the annealing shedule starts with suÆiently high temperatureand ools suÆiently slowly. However, this guarantee omes at great expense interms of funtion evaluations. Finding a suitable annealing shedule whih balanesthe tradeo� of reliability versus eÆieny is key to the pratiality of SA for ourpurposes.AMEBSA [38, pp. 451-455℄ performs SA by modifying a downhill simplex method[38, pp. 408-412℄ suh that atual funtion values of simplex points and possible re-plaement points are perturbed aording to the temperature parameter when makingmove deisions. Sine AMEBSA has no default annealing shedule, we have hosen touse the one supplied in the authors' example [37, pp. 182-184℄. ASA1 [21℄, \adaptivesimulated annealing", is a SA variant that relies on randomly importane-sampling1ASA software developed by Lester Ingber and other ontributors is available at URLhttp://www.ingber.om/ or ftp://ftp.ingber.om.



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 21the searh spae and adapts separate annealing shedules for eah parameter. Theautomati adaptation of the annealing shedule trades o� reliability for eÆieny.SALO [10℄ seeks to ombine the theoretial guarantees of SA with the eÆieny ofloal optimization (LO). SALO on f is SA on f 0, where f 0 is f transformed by LO. Ateah point that SA evaluates, LO takes plae and the value of the loal minimum isreturned. This is intended to \atten" f and speed onvergene to the global min-imum. In both implementations desribed here and in [10℄, ASA is used as the SAmethod. In doing so, we again tradeo� reliability for eÆieny. When eah of theseSA methods halts unsuessfully, it is restarted from the lowest point found thus far.The seond set of algorithms we onsider are variants of Multi Level Single Linkage(MLSL) [40℄. MLSL uniformly, iteratively samples the searh spae and performs LOseletively. For eah iteration, a new bath of points is evaluated. For eah point sam-pled, LO takes plae if there exists no lower sampled point within a ritial distane.2.MLSL1 is the original algorithm[40℄. MLSLD is our variant of MLSL1 whih assumes thatthe LO proedure is deterministi and should therefore never be repeated from thesame sampled point. MLSLO is another variant of ours that orders optimizations foreah iteration by asending funtion value of sampled points. MLSLOD has both vari-ations. Our fourth variant, MLSLSA, alternates iterations of MLSLOD with runs of ASA,using the urrent minimum as the initial point for ASA. LMLSL is our variant of MLSL1whih performs \lazy" funtion evaluation. That is, the funtion value of a point isonly evaluated when it beomes neessary. This avoids the relatively large initial ostwhen optimizing simple funtions. LMLSL� is LMLSL using an �-desent LO proedure.An epsilon-desent proedure guarantees that, for a step greater than �, the funtionvalues at epsilon intervals are sequentially desending.RANDLO simply performs random loal optimizations and is intended to providea baseline for understanding how well LO knowledge is used by SALO and MLSLmethods. MONTE is a Monte Carlo method, the weakest method of those we onsider.We next desribe the loal optimization proedures used by some of these globaloptimization algorithms. FMINU and CONSTR areMatlabTM optimization funtions [13℄.2We used the ritial distane parameter � = 2 with 100 points generated per iteration.



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 22AMEBSA SA simplex methodASA Adaptive Simulated AnnealingCONSTR Sequential quadrati programming methodFMINU Quasi-Newton LOFMINU� FMINU with �-desent LOLMLSL MLSL with lazy f evaluationLMLSL� LMLSL with �-desent LOMLSL Multi-Level Single LinkageMLSL1 basi MLSL methodMLSLD MLSL assuming deterministi fMLSLO MLSL with ordering heuristiMLSLOD MLSLO + MLSLDMLSLSA MLSLOD and SA in suessionMONTE Monte Carlo methodRANDLO Random LOSA Simulated AnnealingSALO SA with LOYURETMIN Yuret's LOTable 2.2: Algorithm Quik RefereneFMINU performs unonstrained optimization using a quasi-Newton method with aBFGS formula for updating the Hessian matrix approximation. FMINU� is our �-desent modi�ation of FMINU. CONSTR performs onstrained optimization using asequential quadrati programming method. We supply searh spae bounds and noadditional onstraints. YURETMIN is our variant of Yuret's Masters thesis Proedure4-1 [54, p.33℄ whih allows spei�ation of searh spae bounds.A quik referene table for algorithms is given in Table 2.2.Finally, we referene the objetive funtions used for omparing the global op-timization algorithms. The �rst part of our study uses funtions seleted from GOliterature and algorithm demonstrations in order to reveal their relative merits. RASTis a saled Rastrigin funtion [10℄. HUMP is the six-hump amelbak funtion [6℄. G-Pis the Goldstein-Prie funtion [6℄. GW1 and GW100 are 6-dimensional Griewank fun-tions with bounds of eah dimension [�1; 1℄ and [�100; 100℄ respetively [10℄. SWISS



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 23CMMR 4-D paraboloid with troughsG-P Goldstein-Prie funtionGW1 Griewank funtion with [�1; 1℄ boundsGW100 Griewank funtion with [�100; 100℄ boundsHUMP 6-hump amelbak funtionRAST Rastrigin funtionSTEP1 Stepper motor stall problem funtionSTEP2 STEP1 logarithmially saledSWISS 4-D paraboloid with pitsTable 2.3: Objetive Funtion Quik Refereneis a 4-D paraboloid with a lattie of many irular pits [37℄. CMMR is a 4-D paraboloidwith a grid of deep troughs [8℄. GW100, SWISS, and CMMR have many loal minima.RAST has a moderate number. HUMP, G-P, and GW1 have few. RAST, GW100, SWISS,and CMMR are generally paraboloid in shape with di�erent loal minima \traps". Allslope up to the bounds of the searh spae.The seond part of our study onerns the motivating example for this researh.Test funtion STEP1 takes as input two parameters (visous frition and load inertia)of the stepper motor model, simulates aeleration of the motor, and performs asimple heuristi evaluation of the trajetory by omputing the minimum distane toa stall state (0 if stalled). Suh a heuristi funtion is often simple to onstrut. STEP2is STEP1 logarithmially saled so as to fous on the unsafe region of the parameterspae. These funtions are shown in Figures 2.2 and 2.3.A quik referene table for objetive funtions is given in Table 2.3.2.4 ResultsOur �rst tests made use of LO proedure FMINU where appliable. 100 optimizationtrials were performed for eah objetive funtion with a maximum of 10000 funtionevaluations permitted per trial. Eah objetive funtion was o�set (if neessary) to
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Figure 2.2: Stepper Motor Test Problem STEP1
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CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 25have a global minimum value of 0. A suessful trial was one in whih the optimiza-tion routine found a point with funtion value less than .001 within 10000 funtionevaluations. This simulates situations where one is seeking a rare failure ase in f .Eah entry in the table of results (Table 2.4) shows the number of suessful trials(upper left) and the average number of funtion evaluations for suh trials (lowerright). RAST HUMP G-P GW1 GW100 SWISS CMMRAMEBSA 16 100 90 100 0 100 239 40 222 86 N/A 1340 5674ASA 100 100 100 100 2 100 100404 225 1042 197 6003 903 3756SALO 100 100 100 100 95 100 0585 65 97 85 4501 163 N/AMLSL1 100 100 100 100 47 100 0872 154 170 185 4315 239 N/AMLSLD 100 100 100 100 60 100 0636 154 170 185 4492 238 N/AMLSLOD 100 100 100 100 52 100 0556 130 132 173 4370 253 N/AMLSLSA 100 100 100 100 22 100 99544 131 130 174 2609 254 5019LMLSL 100 100 100 100 50 100 0847 105 118 96 4508 187 N/ALMLSL� 100 100 100 100 53 100 0638 96 109 93 3864 192 N/ARANDLO 100 100 100 100 58 100 0706 70 96 85 4008 146 N/ATable 2.4: Suessful global optimization trials and average funtion evaluationsGiving the best performane in nearly half of the tests, RANDLO performed sur-prisingly well, espeially for SWISS whih has a 4-D lattie of numerous \traps". AsRANDLO's LO proedure, FMINU is learly rarely aught in suh traps. Sine both trapand non-trap regions are paraboloid surfaes, they e�etively \point" to the globalminimum for LO proedures suh as FMINU. The simple but important observationhere is that loal optimization does not neessarily �nd the nearest loal optimum.We next observe that both SALO and MLSL eah rely somewhat on nearness of LO.We will later turn our attention to the relationship between the global and loal layersof eah. FMINU, whih assumes f is ontinuous, behaved understandably poorly for



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 26highly disontinuous CMMR. Thus all methods dependent entirely on LO failed all CMMRtrials. Given that the harateristis of f may not be well understood, this meansthat a less eÆient LO proedure making fewer assumptions would likely be bettersuited to our purposes.SALO yielded performane similar to that of RANDLO where few LOs suÆed and sig-ni�antly better where more loal optima trapped LO (e.g. in RAST and GW100). At theheart of SALO's design is the following intention: \SA helps in loating good regionsof the searh spae, while the loal optimizer is used to rapidly hit the optimum."[10℄It is lear from this omparison that SALO does indeed suessfully apply SA on f 0 to�nd good regions of f . When omparing ASA with SALO, it also appears that the ostfor transforming f FMINU! f 0 is usually more than ompensated for by the eÆienygained.SALO was designed with hope that f 0 would be a \simpler" surfae than f , reet-ing the funtion value of the nearest optimum. Interestingly, the designers' experi-ments utilized Yuret's LO proedure whih has short term memory and takes inreas-ingly greater steps downhill as suess allows. Suh a LO proedure an possibly passover nearest loal minima as step size beomes large. Also Yuret's proedure, beingstohasti, does not simply transform one surfae to another. Nevertheless, their ex-periments and ours indiate that ASA is able to handle suh LO output graefully inthe long run. The fat that SALO outperforms RANDLO for harder optimization prob-lems is spei�ally a property of SA and more generally a form of learning. One anview the hanging state probability distribution of SA as a gradual aumulation ofknowledge about the loation of the global minimum. While suh learning is e�etivegiven a suitable annealing shedule, it is also weak. Heavily traversed loal minimamay be heavily traversed again. All but one of the funtion evaluations made inLO are ignored. Muh information is wasted. Nonetheless, SALO's performane wasimpressive.Performane of MLSL methods, though similar to that of RANDLO, yields little toommend them over RANDLO. That seletive uniform random LO should perform worsethan unseletive uniform random LO suggests an assumption in MLSL whih is notmet in our study. Following the analysis more losely in both [39℄ and [40℄, we see that



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 27MLSL's LO proedure is assumed to be an �-desent proedure suh that the urrentritial distane e�etively bounds the step size of LO.3 We therefore modi�ed FMINUto be an �-desent proedure and tested LMLSL� for omparison. Although LMLSL� issomewhat of an improvement over LMLSL, it is still generally worse than RANDLO. �-desent does not therefore appear to help us muh. We onjeture that MLSL methodsdominate RANDLO for objetive funtions where LO is trapped in many minima, andthat SALO dominates MLSL methods for suh objetive funtions in our study beauseour f 0-surfaes are easily globally optimized with LO. To eluidate the latter point,onsider RAST, GW100, and SWISS. LO roughly transforms eah into a paraboloidof plateaus. LO of suh LO-transformed funtions an then eÆiently lead to theglobal optimum. We an view the task of global optimization as multi-level loaloptimization. The base-level LO0 takes advantage of whatever information about fis available (ontinuity, gradients, et.), the next level LO1 is suited to the lass ofone's LO0-transformed funtion f 0, and so on. We may stop after arbitrarily many(probably 2-3) LO levels and perform global optimization at the top level. The roleof eah LO level is to enlarge the regions leading to global optima. Multi-Level loaloptimization methods we have developed are presented in Setion 2.7.3.Regarding MLSL methods, let us also note that, like SALO, they all but ignoreinformation gained through LO. Uniformly sampled points are loally optimized basedonly on the values of sampled points within a ritial distane. Again we �nd greatwaste of information gained at great expense.AMEBSA gave mixed results whih an likely be attributed to the lak of anneal-ing shedule tuning. Perhaps an adaptive annealing shedule would make AMEBSAmore suitable for suh problems. ASA's eÆieny was unpreditable, although it wasperhaps the most reliable method for this set of objetive funtions.While these funtions may give a general indiation of the relative strengths ofthese methods without tuning, the funtions share a ommon property undesirable forour purposes: The unonstrained global minimum is never loated at or beyond thebounds of the searh spae. Therefore, our optimization methods need not perform3This is nowhere mentioned in survey [3℄ and is not emphasized elsewhere in the literature.



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 28STEP1 STEP2ASA 0 2N/A 497SALO 10 580 202MLSLOD 10 10127 191LMLSL 10 10163 137RANDLO 10 1078 359MONTE 0 6N/A 469(a) CONSTR

STEP1 STEP2ASA 0 2N/A 497SALO 7 9387 198MLSLO 4 10790 231LMLSL 3 10389 169RANDLO 9 10501 172MONTE 0 6N/A 469(b) YURETMINTable 2.5: Results for STEP1 and STEP2well along the bounds of our searh spae. It is for this reason that unonstrainedFMINU was suitable for use with suh global optimizations. We used this as an oppor-tunity to try two onstrained LO proedures CONSTR and YURETMIN for the steppermotor test problems STEP1 and STEP2. For this testing, we performed 10 trials to�nd a funtion value of 0 with a maximum of 1000 funtion evaluations per trial. Theresults appear in the tables of Table 2.5.Sine both STEP1 and STEP2 have a small number of loal minima along thebounds of the searh spae, behavior of LO again �gured most signi�antly in ourresults. Despite the fat that muh of the searh spae slopes downward away fromthe orner where failures our, CONSTR had a bias towards looking in that partiularorner. It was thought that STEP2 (log-log saled STEP1) would be an easier funtionto optimize, but this was not the ase. Not only was the global minimum basinexpanded, but nearby loal minima also expanded, trapping LO more often.ASA's funtion evaluation expenses were suh that it was outperformed by MONTE.The remaining LO-based methods performed similarly overall. The ost of omputingsimple heuristi information about relative safety of trajetories is usually more thanompensated for by eÆieny in disovering unsafe trajetories through optimization.For both LO proedures, RANDLO gave best performane for STEP1 and LMLSL gave



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 29best performane for STEP2. Although there was no universal \winner" among globaloptimization proedures, it is enouraging to note that proedures suh as SALO andLMLSL ould be run in parallel to ahieve respetable, more reliable results. The hoieof LO proedure proved very signi�ant for performane, whih again undersoresthe importane of developing robust, eÆient LO proedures suited to large lassesof funtions.2.5 Conlusions of Comparative StudyWhile no global optimization proedure was generally dominant in our omparativestudy, random loal optimization seemed best suited for objetive funtions with fewminima, and SALO with ASA seemed best suited for objetive funtions with manyminima. By making use of ASA for SA, one both avoids the need to speify anannealing shedule and bene�ts from its relative eÆieny among SA algorithms.Although one is enouraged to make use of ASA's options to improve performane, wehave not done so and have been pleased with most results nevertheless.SALO and MLSL methods perform global optimization with global and loal searhphases, and rely on loal optimization for eÆieny. However, both methods makelittle or no use of information gained in the ourse of loal optimization. We believethat great progress will be made in global optimization when global optimization andloal optimization are seamlessly integrated to share knowledge gained of f . Whereevaluation of f is omputationally expensive, it is worth omputational expense toutilize suh knowledge for the eÆieny of global optimization. To this end, we havedeveloped a set of information-based optimization tehniques where eah optimizationstep is hosen with respet to the information gained thus far.2.6 Information-based global optimizationIn this setion, we look at a partiular lass of global optimization tehniques whihare suited to spei� harateristis of our problem. We desribe previous informationapproahes to optimization, and present our own speialization of suh tehniques for



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 30initial safety refutation.From the previous omparative study, we noted that most global optimizationmethods throw away most of the information gained in the ourse of optimization.For our purposes, eah evaluation of f requires a simulation and an evaluation of thatsimulation whih may be omputationally expensive, so we are partiularly motivatedto make good use of suh information in order to redue the funtion evaluationsneeded.One approah is to haraterize properties of the set of funtions one wishes tooptimize and to use suh information to onstrut an optimal deision proedurefor optimization. In the ourse of optimization, we use our urrent set of fun-tion evaluations to deide on the next best point to evaluate with respet to ourfuntion set. Suh is the strategy of Bayesian or information approahes to globaloptimization[30, 31, 44, 49℄, whih have optimal average-ase behavior over the set offuntions for whih eah is designed.2.6.1 Strongin's Information ApproahThe information approah to optimization was proposed by Roman Strongin in [47, 48,(in Russian)℄. The �rst English publiation of this work an be found in [49℄. Mostoptimization tehniques rely on some form of assumptions of objetive funtion prop-erties. Some tehniques assume a funtion is Lipshitzian in order to bound solu-tions. Others assume the funtion is nearly paraboli near minima in order to laimquadrati onvergene. Rather than rely on a restritive onstraint language to de�neproperties of the funtions of interest, Strongin sought to instead use a probabilitymeasure on the lass of funtions under onsideration. Eah step of his informationapproah to global optimization onsists of a maximum likelihood estimation basedon the results of previous iterations.In [49℄, Strongin derives an implementation of the information approah for a



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 31one-dimensional root-�nding problem. Strongin's derivation is based on a probabilis-ti preferene for funtions whih satisfy a H�older ondition4 at the root. He alsoderives an implementation of the information approah for a one-dimensional globaloptimization problem. The derivation, desribed as similar to that of the root-�ndingalgorithm, is not given in [49℄, but rather appears in [47℄.In dealing with multidimensional objetive funtions, Strongin applies his one-dimensional approah through use of volume-�lling Peano urves. Simply put, a uni-form grid of points in the volume is onneted by a single line suh that the line omeswithin a ertain distane � of every point in the volume. The suessive re�nementof a Peano urve in two dimensions is shown in Figure 2.4. One-dimensional opti-mization is performed on this line as an approximation of the multidimensional globaloptimization problem. The problem with this approah is that a simple, multidimen-sional, global optimization with one optimum looks like a omplex optimization alongthe Peano urve with loal optima inreasing with eah Peano urve re�nement. For asmall �, the urve must have suh omplexity that the orresponding one-dimensionaloptimization problem beomes needlessly omplex. This is the prie paid for applyingone-dimensional optimization to multidimensional problems. In the next setion, wewill introdue the �rst truly multi-dimensional information approah to optimization.Yaroslav Sergeyev augmented Strongin's information approah to global optimiza-tion with loal tuning based on hange in the loal Lipshitz onstant5 of the objetivefuntion over di�erent segments of the searh region. Sergeyev also reommended ap-pliation of the method using Peano urves. We implemented Sergeyev's informationapproah with loal tuning and used Peano urves to apply the approahes to mul-tidimensional objetive funtions of our omparative study. The results were disap-pointing. Not only was the suess of results very sensitive to a reliability parameterr, but sampling irregularities introdued by the Peano urve were learly visible assharp sampling density ontrasts were observed aross quadrant and subquadrantboundaries.4A H�older ondition is a Lipshitz ondition jf(x)� f(y)j � A(y) jx� yj� of order � with Lips-hitz onstant A.5A loal Lipshitz onstant is a real number  suh that jf(x)� f(y)j �  jx� yj for all y loalto x.
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Figure 2.4: Re�nement of Peano urve in two dimensions



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 332.6.2 Information-Based Optimization for RefutationOur information-based optimization approah to refutation is most strongly inu-ened by the reasoning behind Strongin's approah. We desired a simple means ofharaterizing objetive funtions whih (1) gave rise to a omputationally simpleoptimal deision proess, and (2) allowed disontinuities in objetive funtions. Fur-thermore, the purpose of our optimization is not simply to �nd the global minimum.Rather, we know we are seeking a zero of a non-negative, real-valued funtion. In-stead of seeking the most likely minimum value, we spei�ally seek a zero in orderto refute initial safety of a hybrid system.Our approah relies on two main assumptions about the probability measure onthe lass of funtions we onsider. The �rst assumption is that the funtions are moreoften loally ontinuous than not. This does not prelude disontinuities in funtions.A zero is just as likely to our anywhere in the lass of disontinuous funtions, so werely on there being some loal ontinuity for the maximum likelihood approah to bebene�ial. As we will see, this approah an be surprisingly robust to disontinuitiesin the ontext of multi-level optimization tehniques.Our seond assumption is that lower loal Lipshitz onstants are more likely thanhigher loal Lipshitz onstants. The rami�ation of this likelihood assumption is thatzeros are most likely to our where they require a minimal Lipshitz onstant giventhe sample points evaluated thus far. On a one-dimensional urve, the optimizationproess is simple. First, both endpoints are evaluated. The next point most likelyto be a zero will be that whih minimizes slope between itself and neighboring (i.e.adjaent) evaluated points along the line. This most likely andidate is evaluated,and the proess is repeated until a zero is found or the optimization is terminated. Inthe next setion, we see that there are signi�ant diÆulties to overome in applyingsuh an approah in more than one dimension.



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 342.7 Multi-Dimensional, Multi-Level Information-Based OptimizationPrevious information-based methods have been limited to global optimization in onedimension. In this setion, we introdue two new information-based optimizationmethods for multidimensional problems. We �rst introdue the deision proedureused by these methods, thus expliating the lass of funtions for whih the dei-sion proedure is biased. Next we disuss the use of multi-level loal optimizationfor speeding onvergene. Finally, we introdue the information-based optimizationalgorithms themselves.2.7.1 Deision proedureAt eah iteration i of our algorithm, we wish to evaluate our heuristi funtion f atthe loation xi for whih f(xi) = 0 is most likely to our. We base our notion oflikelihood on harateristis of a lass of funtions to whih f belongs. Our dei-sion proedure is then based on some deision ranking funtion gi whih omputes aranking orresponding to the relative likelihood of a zero ourring at an unevaluatedpoint xi given previous f -evaluations at x1; x2; : : : ; xi�1:gi(xi) def= g(x1; x2; : : : ; xi�1; xi)So for eah iteration i, we ould globally optimize gi to hoose the next x for whihf is evaluated. However, a reliable global optimization of g for eah iteration of aglobal optimization of f is not only omputationally prohibitive, but inreasinglyvery diÆult as well. We instead desire to approximate an optimal deision withrespet to our assumptions about f , and we do so by uniformly, randomly samplingg, returning the optimum of the samples. We all this DECISION1 (Algorithm 1).The omputational omplexity of this deision proedure grows as the omputationalomplexity of evaluating gi (whih we will see is O(i2)).



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 35Algorithm 1 Sampling information-based optimization deision funtionDECISION1(L, lBound , uBound). Input: a list of fx,f(x)g pairs,the lower bounding orner of the searh spae, andthe upper bounding orner of the searh spae.Output: minimum pointmin gx  1for i  1 to maxPts dox  uniformly random vetor in spae bounded by lBound and uBoundgx  g(L, x )if (gx < min gx ) thenmin gx  gxmin x  xreturn min xIn order to onstrut g, we must make some assumptions over f 's lass of fun-tions with regard to where we would most expet to �nd zeros. One assumption wemake is that f is ontinuous6. Another assumption onerns atness and smoothnesspreferenes: Given a set of points and their f-evaluations, a zero is more likely toour where it demands less slope between itself and previous points.A �rst attempt at onstruting gi might be to reate a funtion whih returnsgi(x) = i�1maxj=1 f(xj)kxj � xk :That is, we ould rank the likelihood of f(x) = 0 by omputing the maximum slopebetween the hypothetial zero at x and other points we have already evaluated. Thelesser the g-value, the more likely a zero f -value. The global minimum of g wouldthen be the optimal point at whih to next evaluate f given previous f evaluations.Consider Figure 2.5.Suppose we have evaluated the urve at points a, b, and  and are using suh ag as our deision ranking funtion. Intuitively, we would want g to return point d asthe next best point to evaluate. However, the slope between a and d will make d aless preferable deision point than one to the right of d for whih a zero would have6This is not a trivial assumption for our general appliation, of ourse. Our stepper motor systemtrajetories are ontinuous in the initial ondition. Suh ontinuity is preserved in our hoie of f .
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0Figure 2.5: Shadowing exampleequal slopes to a and  for this simple funtion. We would like instead for point b to\shadow" point d from point a. Our simple attempt to do so is shown as Algorithm 2.A point a is \shadowed" from point d by point b for funtion g if jjd� bjj < jjd� ajjand jg(a)� g(b)j=jja� bjj > jg(a)� g(d)j=jja� djj. That is, a is shadowed by b if bis loser to d than a and the slope between a and b on g is greater than the slopebetween a and d on g.The average-ase optimality of the information-based approah relies on maximumlikelihood assumptions over a lass of objetive funtions. One of these assumptions isa greater likelihood for lesser loal Lipshitz onstants. In one dimension, loal Lips-hitz onstants are omputed with respet to the adjaent previously evaluated pointsalong the urve. In more than one dimension, we must de�ne \loal". If we inludeall previously evaluated points in the omputation of loal Lipshitz onstants, then\loal" really means \global" over the entire searh spae. In evaluating andidatepoints with the shadowing approah, we restrit our attention to non-shadowed evalu-ated points as we ompute loal Lipshitz onstants. If, for any andidate point, lowerLipshitz onstants are more likely between a zero at that point and non-shadowedevaluated points, then our approah retains average-ase optimality. Shadowing is aheuristi approah to relevane, and is helpful to the extent that it more auratelyreets maximum likelihood of zeros for problems of interest.



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 37Algorithm 2 g, the deision proedure funtion to be optimizedg(L, x). Input: a list of fx, f(x)g pairs,the urrent deision point being evaluated.Output: ranking of likelihood that x is a zerofor i  1 to length(L) dodx[i℄  kx � �rst(L[i℄)ksort dx in asending order and permute L aordinglymaxSlope  0for i  1 to length(L) doslope  seond(L[i℄)=dx[i℄if (slope > maxSlope) thennewMaxSlope  truefor j  1 to i � 1 dootherSlope  jseond(L[i℄)� seond(L[j℄)j=k�rst(L[i℄)� �rst(L[j℄)k. Note: This otherSlope information may be ahed.if (otherSlope > slope) thennewMaxSlope  falsebreak from for loop (j)if (newMaxSlope) thenmaxSlope  slopereturn maxSlope2.7.2 Multi-Level Loal OptimizationOne might then onstrut the simple information-based global optimization proeduregiven in Algorithm 3.However, we note that one rami�ation of random sampling in our deision proe-dure is that we do not ahieve eÆient onvergene. This is illustrated in Figure 2.6,whih shows an information-based global optimization of a two-dimensional irularparaboloid with a zero at the origin. From the initial random point in the lower leftorner, the proedure then heks points in the upper right, lower right, upper left,and just left of the global minimum at the enter. The luster of 25 points that followsgradually expands towards the enter from the �fth point. In pratie, where failuresdo not our in minisule regions, this slow onvergene is not a problem. However,we also note that our deision proedure will have to deal with the omputationalburden of small dense lusters of points whih are not very informative globally. We



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 38Algorithm 3 Simple information-based global optimizationinfo-based-opt(lBound , uBound). Input: the lower bounding orner of the searh spae, andthe upper bounding orner of the searh spaeH  fgnewx  random point in searh spaefx  f(newx )if (fx = 0) thenterminate with suessH  append(H , fnewx , fxg)while (true) donewx1  DECISION1(H , lBound , uBound)fx  f(newx )if (fx = 0) thenterminate with suessH  append(H , fnewx , fxg)may wish instead to apply a rapidly onvergent loal optimization proedure and payattention only to the �rst and last points of suh an optimization.In our previous omparative study, we note that this is a ommon approahamong the most suessful methods of the study. A global searh phase makes useof a loal optimization subroutine so that the global phase is, in e�et, searhingf 0(x1) def= f(x2) where fx2; fming = LO(f; x1), where LO is a loal optimization pro-edure. In SALO [10℄ (simulated annealing atop loal optimization), for eah pointevaluation in the global phase, a loal optimization takes plae and the funtion valueof the loal minimum is assoiated with the original point. The e�et an be roughlydesribed as a \attening" of a searh spae into many plateaux (with plateaux or-responding to loal minimum values). This searh paradigm may be generalized toarbitrary levels where eah level performs some optimizing transformation of its searhlandsape to reate a \simpler" one for the level above. Obviously, the work done tosimplify should be more than ompensated for by the redued searh e�ort for thelevel above. The top level performs a global optimization, and all lower levels performloal optimization. We all this paradigm Multi-Level Loal Optimization (MLLO).We assert that information-based optimization is partiularly well-suited to optimiz-ing oarsely plateaued searh landsapes. Now let us onsider two information-based
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Figure 2.6: Information-based global optimization of 2-D irular paraboloidappliations of MLLO.2.7.3 MLLO-IQ and MLLO-RIQMLLO-IQ (Algorithm 4) is a 2-level MLLO with a simple information-based approah(Algorithm 3) atop quasi-Newton loal optimization. With eah iteration, MLLO-IQhooses a point x1, loally optimizes f from x1 to x2, and assoiates f(x2) with bothx1 and x2 in order to \plateau" the spae. In doing so, we limit the number offuntion values involved in deision making. Still, we may wish to further limit suhgrowth in omputational omplexity. By limiting our information-based searh to ahypersphere ontaining a maximum limit of previously evaluated points, we limit theomplexity to a onstant. Suh is the approah taken in MLLO-RIQ.MLLO-RIQ (Algorithm 5) begins with a loally minimized random point and a



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 40Algorithm 4 MLLO-IQMLLO-IQ(lBound , uBound). Input: the lower bounding orner of the searh spae, andthe upper bounding orner of the searh spaeH  fgnewx1  random point in searh spaefnewx2 , fxg  LO(f , newx1 )if (fx = 0) thenterminate with suessH  onatenate(H , ffnewx1 , fxg, fnewx2 , fxgg)while (true) donewx1  DECISION1(H , lBound , uBound)fnewx2 , fxg  LO(f , newx1 )if (fx = 0) thenterminate with suessH  onatenate(H , ffnewx1 , fxg, fnewx2 , fxgg)maximum searh radius. Together these de�ne our initial hypersphere. With eah it-eration, a deision proedure (DECISION2) �nds an approximately optimal next pointto loally optimize within this hypersphere. If the new point has a lesser funtionvalue than the enter, it beomes the new enter and the distane between the twopoints beomes the new hypersphere radius. If too many points are being onsideredin DECISION2, a lesser amount of points losest to enter are retained and the searhradius is adjusted. This information-based loal optimization terminates when thenumber of times the enter minimum is found by loal optimization exeeds a thresh-old. Then the proess repeats with a new random point. Thus we perform a randomsearh of information-based loal optimizations of quasi-Newton loal optimizations.2.8 Experimental resultsWe now ompare our information-based approahes to those onsidered in our previ-ous omparative study. Our �rst tests all made use of the same quasi-Newton loaloptimization method where appliable. As before, 100 optimization trials were per-formed for eah objetive funtion with a maximum of 10000 funtion evaluations
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Algorithm 5 MLLO-RIQMLLO-RIQ(lBound , uBound , maxRadius). Input: the lower bounding orner of the searh spae,the upper bounding orner of the searh spae, andmaximum radius of loal hypersphere searhH  fgradius  maxRadiuswhile (true) dox  random point in searh spaefenter , enterValg  LO(f , x )if (enterVal = 0) thenterminate with suessH  onatenate(H , ffx , enterValg, fenter , enterValgg)sort pairs in H in asending order of k�rst(pair)� enterkH'  up to �rst minPts pairs of HenterHits  0while (enterHits > maxCenterHits) doreenter  falsenewx1  DECISION2(H' , enter , radius)fnewx2 , fxg  LO(f , newx1 )if (fx = 0) thenterminate with suessif (knewx2 � enterk < tolerane1 ) thenenterHits  enterHits + 1if (enterVal � fx > tolerane2 ) thenradius  min(maxRadius, knewx2 � enterk)enter  newx2enterVal  fxenterHits  0reenter  trueH  onatenate(H , ffnewx1 , fxg, fnewx2 , fxgg)H'  onatenate(H , ffnewx1 , fxg, fnewx2 , fxgg)if (length(H' ) > maxPts) thenreenter  trueif (reenter) thensort pairs in H in asending order of k�rst(pair)� enterkH'  up to �rst minPts pairs of H



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 42permitted per trial. Eah entry in the table of results (Table 2.6) shows the numberof suessful trials (upper left) and the average number of funtion evaluations forsuh trials (lower right).RAST HUMP G-P GW1 GW100 SWISSAMEBSA 16 100 90 100 0 10039 40 222 86 N/A 1340ASA 100 100 100 100 2 100404 225 1042 197 6003 903SALO 100 100 100 100 95 100585 65 97 85 4501 163LMLSL 100 100 100 100 50 100847 105 118 96 4508 187RANDLO 100 100 100 100 58 100706 70 96 85 4008 146MLLO-IQ 100 100 100 100 57 100286 71 97 83 4493 157MLLO-RIQ 100 100 100 100 46 100161 57 92 83 4536 148Table 2.6: Suessful global optimization trials and average funtion evaluationsBoth MLLO-IQ and MLLO-RIQ perform very well in general. What is most in-strutive from these results are the ases where the strengths and weaknesses ofthese methods are most prominently displayed. Let us �rst onsider RAST, the Ras-trigin funtion. RAST is a 2-D, sinusoidally-modulated, shallow paraboloid with 49loal minima within the searh bounds. The quasi-Newton loal optimization layer ofMLLO-IQ and MLLO-RIQ e�etively transforms this objetive funtion f into f 0, a shal-low paraboloid of plateaux. MLLO-IQ's global information-based searh of f 0 �nds thelowest plateau very quikly, and the loal information-based searh of MLLO-RIQ doesa foused desent whih leads it to the global minimum with even greater eÆieny.This suggests that these searhes are partiularly well-suited to global optimizationof funtions with a moderate number of loal minima. For funtions with fewer loalminima (HUMP, G-P, and GW1), there is little to be gained by suh extra omputation.Random loal optimization (RANDLO) will suÆe.Now let us onsider the weaknesses of these methods shown in failed ases withGW100. Indeed the performane of these methods is worse than random loal opti-mization. Why? GW100 is a 6-D, sinusoidally-modulated, shallow paraboloid with



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 43about 4� 107 loal minima. For this funtion, our quasi-Newton loal optimizationexhibits interesting and unexpeted behavior: In all but the lowest points of thesurfae, loal optimization most often leads to loal minima that are far from thosenearby the initial point. In this example, we are reminded that \loal" in \loaloptimization" refers to properties of the optimum itself and not the \nearness" ofthe optimum loation. Without suh nearness, the searh landsape is not simplytransformed into a landsape of plateaux. Our quasi-Newton loal optimization didnot optimize to near minima, and so reated a landsape whih was not suited forinformation-based global optimization.MLLO-RIQ also has diÆulty with GW100, but for di�erent reasons. After quikly�nding the region ontaining the global minimum, the method spends muh of theremainder of its searh e�ort �rst searhing many points mutually far apart near theboundary of the 6-D hypersphere. Perhaps randomly sampling f or f 0 within thesearh hypersphere might enourage onvergene. SALO remains our best option forfuntions with a large number of loal minima.While these funtions may give a general indiation of the relative strengths ofthese methods (without tuning), the funtions share a ommon property undesirablefor our purposes: The unonstrained global minimum is never loated at or beyond thebounds of the searh spae. Therefore, our optimization methods need not performwell along the bounds of our searh spae. It is for this reason that unonstrainedquasi-Newton loal optimization was suitable for use with suh global optimizations.We used this as an opportunity to try two onstrained LO proedures CONSTR andYURETMIN for the stepper motor test problems STEP1 and STEP2. (See Figures 2.2and 2.3.) For this testing, we performed 10 trials to �nd a funtion value of 0 with amaximum of 1000 funtion evaluations per trial. The results appear in Table 2.7.These results were very pleasing. MLLO-IQ is the �rst tehnique we have observedthat has sueeded in every STEP1 and STEP2 trial. It does so with exellent eÆienyas well. Sine the deision proedure omputation time was also dominated by sim-ulation time, it was also easily the fastest algorithm for these trials. MLLO-RIQ didsurprisingly well onsidering that most of the searh spae of these funtions slopesdownward and away from the orner of the spae where the rare failure ases our.



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 44STEP1 STEP2ASA 0 2N/A 497SALO 10 580 202LMLSL 10 10163 137RANDLO 10 1078 359MONTE 0 6N/A 469MLLO-IQ 10 1046 219MLLO-RIQ 10 860 330(a) CONSTR

STEP1 STEP2ASA 0 2N/A 497SALO 7 9387 198LMLSL 3 10389 169RANDLO 9 10501 172MONTE 0 6N/A 469MLLO-IQ 10 10108 109MLLO-RIQ 8 9301 239(b) YURETMINTable 2.7: Results for STEP1 and STEP22.9 ConlusionsA powerful approah to initial safety veri�ation is to transform the problem into anoptimization problem and leverage the power of eÆient optimization methods. Thisis aomplished by� providing a good heuristi evaluation funtion f ,� hoosing an eÆient loal optimization proedure well suited to f , and� applying a global optimization proedure for whih one's loal optimizationproedure is well suited.While no global optimization proedure in our studies was generally dominant,we note that random loal optimization seems best suited for heuristi funtions withfew minima, SALO[10℄ seems best suited for heuristi funtions with very many loalminima, and MLLO-IQ and MLLO-RIQ seem best suited for heuristi funtions with amoderate number of loal minima. MLLO-IQ is better suited for problems where theglobal minima are expeted to our at parameter extremes, whereas MLLO-RIQ is



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 45better suited to low-dimensional problems where global minima are found within thespae. Our deision proedure approximates an optimal sequene of trials over thelass of ontinuous heuristi funtions for whih lesser loal Lipshitz onstants aremore likely. Furthermore, we have empirially demonstrated their e�etive use withfuntions having many disontinuities in the ontext of multi-level loal optimization.Finally, we note that the omputational e�ort invested toward eÆient optimiza-tion should be ompensated for by redued overall runtime. For our problem, theomputational expense of our simulation justi�ed suh e�ort. But what of initialsafety problems for whih simulation requires less runtime? Setting maxpts = 0 forAlgorithm 17 yields random loal optimization. As maxpts ! 1, our deisions ap-proah optimality and the deision-making e�ort exeeds the searh e�ort it saves.Where is the happy medium in this tradeo�? In future researh, we hope to investigatemeans of dynamially adjusting the level of strategi e�ort of suh information-basedalgorithms in order to address a larger lass of problems eÆiently.

7Algorithm 1 is alled by Algorithm 3.



Chapter 3SASAT Game-Tree SearhExtending disrete game-tree searh to hybrid system game-tree searh introduestwo new deisions in optimization: ation disretization and ation timing disretiza-tion. These orrespond to the deisions of how to at and when to at. When adisretization is supplied to the searh algorithm, we all it a \stati" disretization,i.e. the searh algorithm annot a�et the disretization hoie. We all suh a searha \SASAT Searh", as it has both Stati Ation and Stati Ation Timing disretiza-tions. A SASAT searh is essentially a disrete searh applied to a hybrid or pieewiseontinuous system. Thus, we an bene�t diretly from AI disrete game-tree searhtehniques.In this hapter, we will formally de�ne a SASAT Hybrid System Game and itssolitaire ase, a SASAT Hybrid System Searh Problem. A magneti levitation on-trol problem is introdued, and we show how the ontrol problem may be posed asa game to ahieve robust ontrol. We then examine three ways of using simulationand game-tree searh to inform robust ontrol of a magneti levitation ontroller. Inthe �rst, we present a dynami-programming approah with an augmented ell-mapor game-graph. Next, we disuss urrent tehniques for alpha-beta searh (with-out approximation) and show the similarity of the resulting ontrol poliy of bothapproahes.Combining the best of both algorithms, we present a synthesis alled Game-GraphAlpha-Beta, whih has a novel form of ahing results of alpha-beta searh for future46



CHAPTER 3. SASAT GAME-TREE SEARCH 47reuse. This synthesis provides a more eÆient means of online hybrid system ontrolfor low-dimensional state spaes, assuming that a good disretization an be found.We onlude with a summary and disussion of future diretions.3.1 SASATHybrid SystemGame and Searh Prob-lemFormally, a SASAT Hybrid System Game is de�ned as a 7-tuplefS; s0; A; p; l;m; dgwhere� S is the hybrid state spae with a �nite number of �nite disrete variable do-mains, and a �nite-dimensional ontinuous spae,� s0 2 S is the initial state,� A is the �nite disrete ation spae,� p is the number of players,� l : S � f1; : : : ; pg ! fa1; : : : ; ang 2 A is a legal move funtion mapping from astate and player number to a �nite set of legal ations that may be exeuted inthat state by that player,� m : S�Ap ! S�<p is a move funtion mapping from a state and simultaneousplayer ations to a resulting state and the utility of the ombined ations foreah player,� d : S ! S � <p is a delay funtion mapping from a state to the resulting stateand the utility of the trajetory segment for eah player. This delay governsthe evolution of the system through time between moves.



CHAPTER 3. SASAT GAME-TREE SEARCH 48The total utility of any �nite trajetory is omputed as the sum of the traje-tory move and delay utilities. In this time-invariant formalism, time an easily beenoded in a ontinuous lok variable, and time invariant behavior ould thus beeasily ahieved.Although not addressed in this hapter, a SASAT Hybrid System Searh Problemis a speial ase of the SASAT Hybrid System Game where we are interested in �ndinga trajetory from the initial state to a goal state. Usually suh problems are statedin terms of path ost rather than utility. Formally, a SASAT Hybrid System SearhProblem is de�ned as a 7-tuple fS; s0; Sg; A; l;m; dgwhere� S is a hybrid state spae with a �nite number of �nite disrete variable domains,and a �nite-dimensional ontinuous spae,� s0 2 S is an initial state,� Sg � S is a set of goal states,� A is a �nite disrete ation spae,� l : S ! fa1; : : : ; ang 2 A is a legal move funtion mapping from a state to a�nite set of legal ations that may be exeuted in that state,� m : S � A ! S � < is a move funtion mapping from a state and ation to aresulting state and ost of the ation,� d : S ! S � <p is a delay funtion mapping from a state to the resulting stateand the ost of the trajetory segment for eah player. This delay governs theevolution of the system through time between moves.We next desribe a SASAT Hybrid System Game in the domain of magnetilevitation.
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Figure 3.1: Shemati of magneti levitation system. Courtesy of Feng Zhao: phase-spae based magneti levitation ontrol experiment
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Figure 3.2: Blok diagram of magneti levitation system operation. Courtesy of FengZhao: phase-spae based magneti levitation ontrol experiment3.2 Magneti Levitation ProblemWe seek to use simulation and game-theoreti tehniques to design a safe ontrolpoliy for the magneti levitation (maglev) system of [55, 28℄ in whih the goal isto suspend a metal ball beneath an eletromagnet. This nonlinear, unstable sys-tem requires an ative ontroller for stabilization, and is representative of magnetilevitation systems found on high-speed transportation systems suh as the GermanTransrapid system. The shemati for Zhao's maglev system is given in Figure 3.1.Figure 3.2 shows a blok diagram of maglev system operation. The system state isestimated from photosensors and sampled at a rate of about 5000Hz. The ontrollermaps system state to the ontrol power output whih a�ets the eletromagneti



CHAPTER 3. SASAT GAME-TREE SEARCH 50oil urrent. This in turn a�ets the system state, so this is a losed loop system.System state inludes the distane x and veloity v from the eletromagneti solenoiddownward to the ball, and the oil urrent i. The di�erential equations desribingthe dynamis of this system are8<: dxdt = vdvdt = g � L0x0I22mx2where� g = 9:81m=s2 is gravitational aeleration,� L0 = 0:00802H is the solenoid-ball system indutane at equilibrium,� x0 = 0:0116m is the desired vertial gap between solenoid and ball,� I is the oil urrent ontrol parameter, and� m = 0:008432Kg is the ball mass.We take a game-theoreti approah for the purpose of synthesizing safe maglevontrol in the fae of external perturbation and error introdued through modelingapproximations and numerial simulation. The problem is thus desribed as a gamewhere the ontroller may hange the magneti oil urrent while the adversary mayperturb the behavior of the system in the period between ontroller ations. Speif-ially, using a �fth-order Cash-Karp Runge-Kutta method to simulate x and v over0.01 se to x0 and v0 within the region 0:005m � x � 0:018m, �0:3m=s � v � 0:3m=s,and 0:03A � I � 0:83A, the adversary may introdue relative error of at most 10%.Sine we assume that ations are disretized, we onstrain the ontroller to a uniformdisretization of 20 urrents from 0.03A to 0.83A, and we onstrain the adversaryto 8 perturbations of 10% in uniformly-distributed diretions in the position-veloityplane of the state spae.



CHAPTER 3. SASAT GAME-TREE SEARCH 513.3 SASAT Dynami Programming Game-GraphMethodCell mapping methods [20℄ have been used to perform state-spae analysis of dy-namial systems. In suh methods the state-spae is divided into ells. Eah ell ismapped to another ell to whih it will evolve after a �xed time interval. The resultinggraph approximation of the system dynamis is then analyzed. One advantage of ellmapping is that one an form an approximation of the state spae aording to om-putational spae limits, and perform an eÆient, polynomial-time, global state-spaeanalysis.Dynami programming, ell-mapping tehniques for omputing optimal ontroldate bak to the work of Wang[53℄ for systems desribed by �rst-order ordinary dif-ferential equations. For eah quantized ontrol vetor, di�erential equations speifya diretional �eld whih an be disretized and used to ompute ell-map transitions.Wang used a dynami programming approah for the omputation of optimal ontrolpoliies. In this hapter, we augment his tehnique for multiple players, taking a moregeneral simulation-based approah to ell-map disretization, and allowing for bothdisrete and ontinuous transition utilities.In seeking to extend suh methods to n-player games, we augment the ell mapwith set-valued mappings from a fell, playerg pair to a set of ells, irumsribingthe possible e�ets of a player's ations in that ell. For eah player, eah ell is nowmapped to a set of ells to whih it may evolve after a �xed time interval. We referto this augmented ell-map as a game-graph. Rather than performing minimax on atree, we perform minimax on the approximating game-graph instead, thus reduingthe exponential omplexity of a minimax tree searh to the polynomial omplexityof a minimax graph searh. Our generalization of minimax for n-players follows [27℄where eah player seeks to maximize its omponent of a sore vetor.Algorithm 6 is the ore proedure for our dynami programming game-graphmethod. Following initialization, this proedure is iterated on the game-graph in



CHAPTER 3. SASAT GAME-TREE SEARCH 52Algorithm 6 Iteration of Dynami Programming Game-Graph MethodDynamiProgrammingIteration(gameGraph, player). Input: game-graph (augmented ell-map),urrent player number.Output: game-graph with sores updated for one level of searhforeah ell in gameGraph doell.newSoreVetor  negativeIn�nityVetorforeah destCell in ell.playerMap[player℄ donewSoreVetor  moveSore(ell , player , destCell) + destCell.soreVetorif (newSoreVetor[player℄ > ell.newSoreVetor[player℄) thenell.newSoreVetor  newSoreVetorforeah ell in gameGraph doell.soreVetor  ell.newSoreVetorreturn gameGraphreverse turn order in the dynami programming style1. To initialize, �rst zero thegame-graph sore vetors. Then initialize the individual set-valued player maps whihindiate the possible ations of eah player at eah ell. In applying this method tothe maglev problem, the ontroller player map maps eah ell to all other ells thatdi�er only in ontroller input (urrent). The adversary player map maps eah ellto the set of ells possibly reahable during the ontinuous system evolution phase,taking into aount perturbation and error.Sine players need not neessarily alternate turns, let us for ease of analysis de�neb as the e�etive branhing fator of the player mappings as used over suessive allsto Algorithm 6. Let  be the number of ells and p be the number of players. Thenthe time and spae omplexity of Algorithm 6 are O(b) and O(pb), respetively.With player maps ompatly represented and/or onservatively approximated, thespae omplexity may be redued to O(p).What we have not �gured into this analysis is the \urse of dimensionality" inthe state-spae. If we divide a state-spae into a uniform grid of ells, the number ofells will grow exponentially with the dimension of the spae. Thus this method isonly appliable to systems with low-dimensional state-spaes.1Evaluation takes plae from terminal states at some time horizon bakwards in time throughdeision stages.



CHAPTER 3. SASAT GAME-TREE SEARCH 53This method also plaes the burden of ell-partitioning and time disretization onthe user. Too oarse a ell-partition, and suh omputation yields little information.Too �ne a partition, and we violate omputational spae onstraints. While adaptivetehniques for ell-deomposition are being developed [4℄, these disretization issuesare far from resolved.The granularity of the ell-partition ditates the granularity of the approximatedontrol poliy. For our maglev problem, it would be desirable to have a �ner dis-retization of the state spae lose to the desired goal state. Given that the goalstate is a single point in the spae, we might use some distane measure from thispoint to perform variable-size partitioning of the state spae. We have not exploreddomain-spei� improvements in this researh in the interest of generality, and suhdomain-spei� improvements are left as open problems.The size of a simulation time-step used to build the augmented ell-map is anotherburden on the user. If too large a time-step is hosen in sampling behavior, theremay be a number of undesirable onsequenes. A oarse sampling an result in anuninformative and unhelpful mapping. In skipping over too many ells, single limityles may appear to be multiple limit yles, obsuring underlying system dynamis.Also, a system that may be stabilized when sampled above a ertain rate may notbe stabilizable below that rate. A oarse sampling an also result in an undesirablyinaurate mapping as simulation numerial errors an ompound exponentially withsimulation time. In hoosing a small enough time step to avoid these problem, onemust be areful not to pik so small a time step that ells that atually evolve toother ells begin mapping only to themselves. For further disussion of sample rateseletion issues, see [12, Ch. 11℄.One assumption of these tehniques is that eah suessive layer of a tree or graphontains nodes that all our at the same time. Searh to a given depth is searh toa given time horizon. If adaptive disretization tehniques were to be applied to thehoie of time-steps, then we would need to deal with evaluation of a tree withoutuniform time horizons.We note that this method is not suited for real-time online use. While suh amethod ould be used o�ine to form a ontrol poliy a priori, it is not designed



CHAPTER 3. SASAT GAME-TREE SEARCH 54to fous on an immediately relevant ontrol deision. Rather, its omputation is dis-tributed aross the entire game-graph. This limitation is addressed in the graph-basednegamax Algorithm 7. Negamax is an equivalent, alternate representation of mini-max for two-player zero-sum games, where eah player seeks a path that maximizesthe negated return values of the next deeper level of searh.Algorithm 7 Negamax on a Game-GraphtbhGame-Graph-Negamax(node, player , depth). Input: urrent node (or ell) of game-graph (augmented ell-map),urrent player number,depth of searh at node.Output: sore returned by searhif (depth = 0 or leafNode(node) or node.omplete[depth℄[player℄) thenreturn node.soreVetor[depth℄[player℄nextPlayer  (player + 1) mod 2bestNode  nullbestSore  �1foreah destNode in node.playerMap[player℄ dosore  moveSore(node, player , destNode)+� Game-Graph-Negamax(destNode, nextPlayer , depth)if (bestNode = null or sore > bestSore) thenbestNode  destNodebestSore  soreatomi:node.soreVetor[depth℄[player℄  bestSorenode.bestNode[depth℄[player℄  bestNodenode.omplete[depth℄[player℄  truereturn bestSoreAs input, Algorithm 7 takes the urrent node, player, and depth of the searhbelow the urrent node. As output, it returns the value of the subtree of the givendepth at the given node for the given player. This algorithm ould be used in real-time as an interruptible anytime algorithm that is alled with sequentially greaterdepths as time remains. Over time, as more and more searh results are ahed, thealgorithm is able to reuse these results to ahieve deeper searh over time. Memorywould be prealloated and a depth limit set. As searhes beome omplete to thegiven depth limit, searh an be direted to other areas of the state spae.In summary, the dynami programming game-graph method has polynomial time



CHAPTER 3. SASAT GAME-TREE SEARCH 55and spae omplexity and is appliable to o�ine ontrol design for low-dimensionalstate spaes, assuming that a good disretization an be found. For real-time appli-ations, one would want to fous searh relevant to the urrent situation. For suha situation, we desribe a simple means of ahing results from iteratively deepeningnegamax searhes. We now turn our attention to the generalized hybrid alpha-betamethods in order to explore an even greater fousing of searh along relevant lines ofgame-play.3.4 SASATGeneralized Hybrid Alpha-Beta MethodIn minimax searh, a game-tree is generated with two players MAX and MIN, al-ternately maximizing and minimizing the sore at alternating depths of the tree.However, muh of the tree need not be generated (i.e. it an be \pruned") sine it isprovably irrelevant given information gained during searh.The origin of alpha-beta pruning is not lear. The following aounts of its earlyhistory are taken from Nils Nilsson [34, pp. 151-152℄ and Judea Pearl [35, p. 286℄.Nilsson laims that alpha-beta pruning is \usually thought to be a rather obviouselaboration of the minimaxing tehnique" and onjetures that many people \disov-ered" it independently. Pearl laims that John MCarthy was the �rst to \reognizethe potential for alpha-beta-type pruning" in 1956 and oined the name \alpha-beta".Nilsson points to an artile by Newell, Shaw, and Simon [33℄ as the �rst desriptionof alpha-beta, whereas Pearl points to a memorandum of MCarthy's students Hartand Edwards [14℄ whih inludes desription of \deep uto�s". Pearl notes that the1958 hess-playing program of Newell, Shaw, and Simon (and probably the 1959heker-playing program of Samuel) used only shallow uto�s. Pearl laims that afull desription of the algorithm with deep uto�s was not published until Slagle andDixon in 1969 [45℄. Nilsson additionally points to Samuel's seond hekers paper [43℄.The ore idea is this: If, in evaluating a node of a game tree, one an prove thata rational player will not hoose the path to that node, one an avoid examinationof (i.e. \prune") the subtree rooted at that node. By simple dynami bookkeepingof the best sore that eah player an ahieve, asymptoti optimality is gained for



CHAPTER 3. SASAT GAME-TREE SEARCH 56suh searhes. In [23℄, it was shown that the asymptoti branhing fator of searh isb= log b, where b is the e�etive branhing fator without pruning. Thus, the asymp-toti time omplexity of alpha-beta searh is O((b= log b)d), where d is the searhdepth.A reent desription of alpha-beta searh an be found in [41℄. Alpha-beta searhwas generalized to n-players by Rihard Korf in [24℄. Korf proved that if one assumesan upper bound on the sum of player sores and a lower bound on eah individualsore, then deep pruning annot our for n > 2. Deep pruning of a node is based ona soring bound inherited from a great-grandparent or more distant anestor2. Onlyshallow pruning is possible for n > 2. In the best-ase, shallow pruning redues theasymptoti branhing fator to (1 +p4b� 3)=2. However, shallow pruning does notredue the asymptoti branhing fator. Thus we fous our attention on two-playeralpha-beta searh, noting that it an be generalized for n-players.The zero-sum algebrai onstraint over the sores provides the rational basis foralpha-beta pruning, but what if the game is not zero-sum? Interestingly, knowledge ofone's problem domain may provide even more useful onstraints. If it an be provedthat one player will hoose a move in a state that is guaranteed to ause anotherplayer to prelude the possibility of reahing that state out of preferene for anotherline of play, all searh beyond that state may be pruned. For instane, onsider aooperative form of the airraft ollision avoidane problem of [52℄, where all soresare identially the minimum distane between any two airraft over time. One allairraft are reeding from one another, we may obviously onlude that the soreswill remain �xed. This is an example of a onstraint on future sores whih enablespruning without ever reahing uto� states. Pruning onstraints may take on otherforms as well. If, for instane, it an be proved that the best adversarial maglevperturbation is a maximal perturbation, we redue the dimensionality of relevantadversary ations. In broadening the onstraints one onsiders, one may introduefar more signi�ant forms of pruning to minimax searh.2That is, three or more nodes towards the root.



CHAPTER 3. SASAT GAME-TREE SEARCH 57For real-time ontrol, suh an algorithm ould be used within an iterative deep-ening, or iterative re�nement anytime algorithm. By iterative re�nement, we meanthat we start with a oarse disretization of player deision points and ompute anapproximate solution (reommended ontrol ation) with our hybrid alpha-beta algo-rithm. We store the ation, re�ne our disretization (i.e. allow more frequent turns),and iterate, omputing suessively better approximate solutions until the algorithmis halted and the stored ation is returned. See Chapter 5 for a desription of severaliterative re�nement approahes.Although this approah does not require disretization of the state-spae, theuser still has to supply disretizations of ontinuous ranges of ations and deisiontimes. Possible ways of dynamially hoosing suh disretizations are investigated inall hapters that follow.One limitation of this approah is one shared by all tree-based methods: Highbranhing fators quikly fore shallow searh. Sine we are dealing with a minimaxsearh on a tree rather than a graph, the time omplexity is O(bd), where b is thee�etive branhing fator and d is the maximum searh depth. However, the spaeomplexity is O(d), so we have signi�antly traded o� time for spae. We have notonly under-utilized omputational spae resoures, but we have saved no informationfor future use and annot expet searh performane to improve over time. Giventhe in�nite state-spae of the searh, and the approximate nature of simulation, itwould make sense to use approximation and/or abstration in order to ahieve betterperformane over time. One possible step in this diretion is to use alpha-beta withiterative deepening on a game-graph, ahing results of partial alpha-beta omputa-tions in order to speed-up future minimax searhes and allow greater depth of searhover time. We introdue this new synthesis of tehniques in Setion 3.6.3.5 Experimental ResultsWe have performed experimentation with the dynami programming game-graphmethod and the alpha-beta pruning method. In both ases, the results were qualita-tively omparable to those of Zhao[55, 28℄.



CHAPTER 3. SASAT GAME-TREE SEARCH 58For the dynami programming game-graph method, we hose to disretize theposition, veloity, and output urrent to a 20 � 20 � 20 uniform grid within thebounds given earlier. The ontroller takes a turn every 0.01 se. These disretizationhoies were arbitrary. We have not experimented with other disretizations to seehow performane would be a�eted.Figures 3.3{3.6 show the mapping from input state x, v to output urrent Ifor the dynami programming game-graph method iterated to depth 2, 4, 6, and8. Figures 3.7{3.10 show trajetories from these respetive ontrol poliies. As onean see, the depth 2 mapping gives the general qualitative behavior desired, and thedepth 4 mapping is very similar to those for depth 6 and 8. For this problem, behaviorappears to onverge quikly in a few iterations, so it seems fortunate to have hosensuh a time interval in our disretization. It would be interesting to experiment withadaptive step sizing for this method.To apply the resulting poliy to a ontroller, we simply perform a nearest-neighbormapping at eah time interval. Eah input state is mapped to its orresponding ell,and the ell is mapped to an output urrent. The urrent is maintained for the nexttime interval3, and the proess is repeated inde�nitely.The front and bak orners of these �gures are losing ells (i.e. states from whihthe ontroller is guaranteed to lose), so 0.03A output urrent is as good as any other.However, not all 0.03A urrent ell outputs indiate a losing ell. Figures 3.11 and3.12 indiate the ell sores for di�erent ells. Sine we have given ells that leadoutside the game-graph bounds an arbitrary large negative sore, these �gures mainlydi�erentiate between winning and losing states, that is, those states that an be keptwithin the game-graph region and those that annot.All states kept within the game-graph region are guaranteed to evolve to a smallsubset of ells about the desired ell. In pratie, one ould bring the system tothe exat desired equilibrium state by swithing to a ontrol law derived by small-signal linearization as soon as the state ame within a neighboring region about the3This is alled a zero-order hold in ontrol terminology.



CHAPTER 3. SASAT GAME-TREE SEARCH 59equilibrium state for whih there exists a positive de�nite Lyapunov funtion4. Small-signal linearization of a magneti levitation ontroller is demonstrated in [11, x 2.6.1℄.The alpha-beta method did not, of ourse, need to be generalized to n-players forthis problem domain. Our experimentation with it provided two signi�ant piees ofinformation: (1) Memory alloation issues are signi�ant to the eÆieny of real-timeappliations. In omparing two implementations with di�erent memory management,we found that prealloating memory and managing it was signi�antly faster thanthe alloating and dealloating memory through normal means. (2) The state-spaedisretization we used to approximate maglev system dynamis for the dynami pro-gramming game-graph method did not signi�antly degrade performane, that is, wehose a good approximation earlier. While there may be analyti means of derivingappropriate disretizations for simple dynamial systems suh as this, suh hoies arenot obvious for omplex systems. Again, it would be interesting to researh adaptivedisretization of the state spae, so that the designer need not simply guess at whatmight be orret for omplex systems.Sample trajetories of the alpha-beta method an be seen in Figures 3.13{3.14.The arrows in the x-v plane are adversarial moves, while the vertial arrows are instan-taneous ontroller urrent hanges. These math up very niely with Figures 3.3{3.4.Figures 3.15{3.16 show pieewise ontinuous trajetory segments and more learlyillustrate the global dynamis.3.6 SASAT Alpha-Beta on a Game GraphIn this setion, we introdue an algorithm for performing two-player alpha-beta on agame-graph. It ould be argued that alpha-beta has long sine been applied to disretegames with di�erent means of reahing the same states. However, this approah isdistintive for a ouple reasons.First, alpha-beta searh results are stored for eah sequential depth of searh pre-viously performed. In literature on transposition tables, we have not found methods4For an introdution to stability in dynamial systems, see [50, x 1.3℄.
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Figure 3.3: Maglev output urrents from the SASAT dynami programming game-graph method, depth 2
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Figure 3.4: Maglev output urrents from the SASAT dynami programming game-graph method, depth 4
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Figure 3.5: Maglev output urrents from the SASAT dynami programming game-graph method, depth 6
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Figure 3.6: Maglev output urrents from the SASAT dynami programming game-graph method, depth 8
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Figure 3.7: Maglev trajetories from the SASAT dynami programming game-graphmethod depth 2
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Figure 3.8: Maglev trajetories from the SASAT dynami programming game-graphmethod, depth 4
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Figure 3.9: Maglev trajetories from the SASAT dynami programming game-graphmethod, depth 6
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Figure 3.10: Maglev trajetories from the SASAT dynami programming game-graphmethod, depth 8
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Figure 3.11: Maglev trajetory sores from the SASAT dynami programming game-graph method, depth 2
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Figure 3.12: Maglev trajetory sores from the SASAT dynami programming game-graph method, depth 8
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Figure 3.13: Maglev trajetories from the SASAT alpha-beta method, depth 2 (withurrent hanges)
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Figure 3.14: Maglev trajetories from the SASAT alpha-beta method, depth 4 (withurrent hanges)



CHAPTER 3. SASAT GAME-TREE SEARCH 66

0.006
0.008

0.01
0.012

0.014
0.016

−0.2

−0.1

0

0.1

0.2

0.3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

position (m)velocity (m/s)

cu
rr

en
t (

A
)

Figure 3.15: Maglev trajetories from the SASAT alpha-beta method, depth 2 (with-out urrent hanges)
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Figure 3.16: Maglev trajetories from the SASAT alpha-beta method, depth 4 (with-out urrent hanges)



CHAPTER 3. SASAT GAME-TREE SEARCH 67that store more than the deepest searh performed at a node. Generally, appliationsof transposition tables are zero-sum games where players perform a sort of tug of wararound an even sore. In suh a ase, a deeper searh will yield more useful infor-mation than a shallower searh, so it makes sense to only store the deepest searhperformed. Zero-sum games with monotonially inreasing/dereasing sores are notserved well by suh an approah. In this ase, searhes of equal depth should beompared at eah node. Comparing sores from searhes of di�erent depths wouldbias moves in poor diretions. Put simply, moves for suh games should be evaluatedwith respet to a �xed time horizon.The seond distintive feature of this searh is our assumption that the entiregame-graph an be enumerated and stored in memory. This is unusual in that mostdisrete games of interest to researhers do not have suh small state spaes.The pseudoode for our Game-Graph Alpha-Beta algorithm an be seen in Algo-rithm 8. Given a zero-sum game, one player (usually alled MAX) maximizes sorewhile their adversary (usually alled MIN) minimizes sore. Rather than write twoproedures for the two players, we again take a negamax approah.As input, Algorithm 8 takes the urrent node and player, sores for eah playerthat an be guaranteed aording to searh so far, and depth of the searh below theurrent node. The guaranteed sores are a vetor (�, ��), where � is the lower boundand �� is the negated upper bound of relevant searh values at that node. As output,it returns the weakest pruning onditions used in the searh. This algorithm is used inreal-time as an interruptible anytime algorithm that is alled with sequentially greaterdepths as time remains. Over time, as more and more searh results are ahed, thealgorithm is able to reuse these results to ahieve deeper searh over time. Memorywould be prealloated and a depth limit set. As searhes beome omplete to thegiven depth limit, searh an be direted to other areas of the state spae.The Game-Graph Alpha-Beta algorithm begins by heking if (1) searh is at itsdepth limit, or (2) the urrent node is a leaf node. If so, a vetor of worst possiblesores are returned, indiating that no pruning onditions were used from previoussearh in searhing the subtree at that node. Reall that both players are maximizingthe negated sores of the subtrees at eah level.
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Algorithm 8 Alpha-Beta on a Game-GraphGame-Graph-Alpha-Beta(node, player , prevGuaranteeVetor , depth). Input: urrent node (or ell) of game-graph (augmented ell-map),urrent player number,guaranteed player sores from previous searh (�, ��),depth of searh at node.Output: weakest pruning onditions used in searhif (depth = 0 or leafNode(node)) thenreturn f�1;�1gif (prevGuaranteeVetor � node.pruneCondVetor[depth℄[player℄) thenreturn node.pruneCondVetor[depth℄[player℄otherPlayer  (player + 1) mod 2soreGuaranteeVetor  prevGuaranteeVetorpruneCondVetor  f�1;�1gbestNode  nullbestSore  �1foreah destNode in node.playerMap[player℄ dohildPruneCondVetor  Game-Graph-Alpha-Beta(destNode, otherPlayer ,soreGuaranteeVetor,depth)pruneCondVetor  max(pruneCondVetor , hildPruneCondVetor)s  moveSore(node, player , destNode) +�destNode.abSore[depth℄[otherPlayer℄if (bestNode = null or s > bestSore) thenbestNode  destNodebestSore  sif (s � �prevGuaranteeVetor[otherPlayer℄) thenpruneCondVetor[otherPlayer℄  max(pruneCondVetor[otherPlayer℄ ,prevGuaranteeVetor[otherPlayer℄)goto pruneif (s > soreGuaranteeVetor[player℄) thensoreGuaranteeVetor[player℄  sprune:if (s � pruneCondVetor[player℄) thenpruneCondVetor[player℄  �1atomi:node.abSore[depth℄[player℄  bestSorenode.bestNode[depth℄[player℄  bestNodenode.pruneCondVetor[depth℄[player℄  pruneCondVetorreturn pruneCondVetor



CHAPTER 3. SASAT GAME-TREE SEARCH 69Next, we hek the weakest preonditions of previous ahed searh informationto see if the results an be reused. If so, we return those weakest preonditions. Theweakest preondition for all searhes must be initialized to the best possible sores(1, 1) in order to ensure that an initial searh ours. When a searh is ompletedwithout relying on given sore guarantees for pruning, the weakest pruning onditionswill be (�1, �1). Hene that searh is omplete and stored results will always bereused.After initialization of a number of variables, we then turn our attention to eahpossible destination node for the player from the urrent node. For eah, we performa reursive all to Game-Graph Alpha-Beta, reord the strongest pruning onditionsused in the subtree searh, and reord the sore. If the sore is the best seen at thisnode, we note the new best sore and destination node. If the sore violates a zero-sumonstraint with the guarantees, then we have proven that the rational adversary willnot allow the game to progress to this point and thus prune the remaining searhes,making note of the pruning ondition. Otherwise, we update the urrent player soreguarantee if neessary.After searhing destination nodes as neessary, we hek if the urrent player'ssubtree searh sore satis�es the weakest pruning ondition for that player in thesubtree searh. If so, then no guarantees for the player's sore above the subtree wereneessary for the pruning, and we set the weakest pruning ondition for that playerto �1.Finally, we reord the results of the searh. This blok of ode is marked \atomi"to indiate that interruption of the algorithm within this blok would potentially leavethe data in an erroneous state.One straightforward heuristi for speeding up suh searh is to use the best nodeof previous searh (of similar depth) as the �rst node for exploration. By looking ata strong potential best move �rst, we are more likely to set tighter pruning boundsearlier in the searh.It should be noted that for a given node, player, and searh depth, suessivealls with overlapping bounds would result in a searh never being omplete. Oneould onstrut pathologial global searh and alling onditions suh that asymptoti



CHAPTER 3. SASAT GAME-TREE SEARCH 70global behavior over time would be better served by avoiding pruning altogether. Itis not lear how often suh situations ould arise in pratie. In Chapter 4, we willsee that pruning an yield suh signi�ant searh speedup in this domain, so thateven without storage and reuse of searh results, alpha-beta pruning is well-appliedto this problem domain.3.7 Relation to Memory-Based TehniquesIn [32℄, Moore, Atkeson, and Shaal present a olletion of memory-based tehniquesfor learning ontrol. Of partiular relevane to the work of this hapter is theirresearh into optimal ontrol with nonlinear dynamis and osts[32, x7℄. In thissetion, we give an overview of their memory-based approah, ompare and ontrastit with our own, and note possible diretions for future work.Developed independently, memory-based approahes expliitly remember all pre-vious experienes and apply suh knowledge to the problem of learning ontrol. Pre-dition and generalization are performed online in real-time by building a loal modelto answer any query, where a query is a urrent state and desired resulting systembehavior, and an answer to a query is an ation mapping the urrent state to thedesired behavior. Although the idea is more general, stored experienes are used tobuild loal models represented as polynomial approximations of system evolution.Parameters for the polynomial are estimated using linear weighted regression (LWR).Suh tehniques are said to provide expliit parameters to ontrol smoothing, outlierrejetion, and forgetting. The last proess is partiularly important for the develop-ment of memory-bounded variants.Moore et al desribe system dynamis as an unknown funtionx(t + 1) = f(x(t);u(t)) + noise(t)with a known ost funtion (t) = ost(x(t);u(t)):



CHAPTER 3. SASAT GAME-TREE SEARCH 71The task is minimization of one of the following ost summations:1Xt=0 (t) or tmaxXt=0 (t) or 1Xt=0 t(t) where 0 <  < 1 or limn!1 1n nXt=0 (t)The authors note that there is a large literature on suh problems in the ontext ofreinforement learning. The state spae is disretized into a multidimensional arrayof ells, and system dynamis are approximated to ell enters as with ell map meth-ods. They present the following basi approah, alled Memory-Based ReinforementLearning whih uses a dynami programming value iteration to ompute an optimalvalue funtion:1. Observe the urrent state x(t) and hoose ation u = �(x), where � is theurrent estimated optimal ontrol poliy.2. Perform ation and observe next state x(t + 1).3. Add (x(t);u)! x(t+ 1) to the memory base.4. Reompute the optimal value funtion and poliy using value iteration with thenew information.Value iteration is omputationally expensive, so this algorithmwould not be suitedto fast, real-time appliation. Experimentally, it was used with a simulated systemthat had its state frozen while updating its poliy. The authors suggest that fornormal usage one would update the value funtion and poliy at the end of eah trialor in an inremental parallel proess.Convergene of reinforement learning is dependent on the system visiting eahstate-ation pair in�nitely often. Memory-based reinforement learning does not prob-abilistially explore as do most reinforement learning algorithms. The result of thislak of exploration is that it onverges to orret behaviors faster when the learnedmodel does not ontain signi�ant errors. The authors point out that signi�ant noisean introdue errors that steer the system in signi�antly suboptimal diretions whilesuh memory persists. Thus, the guarantee of onvergene to an optimal solution is



CHAPTER 3. SASAT GAME-TREE SEARCH 72traded o� for speed of onvergene to a solution, muh the same way that simulatedquenhing does in the ontext of simulated annealing. In pratie, this an be quitesensible. In fat, simulated quenhing with random restarts is in popular use amongthose who use simulated annealing. We suggest that one might ombine the result-ing poliies of multiple runs of memory-based reinforement learning to synthesize apoliy augmented with risk information.Two experiments were performed with a simple nonlinear dynamial system in-volving the positioning of a puk on a urved one-dimensional surfae. In the �rstexperiment, unvisited states were assumed to have a ost of zero. In the seond exper-iment, transitions between ells were predited using loally weighted linear regressionfrom previous observations. The seond ahieved behavior within 3% of optimal withtwo orders of magnitude fewer steps than in the �rst experiment.There are a number of similarities and di�erenes between this approah and oursthat are worth noting. First, we note that the system model inludes noise and isnondeterministi. Our approahes assume determinism. However, this di�erene isnot so signi�ant when one onsiders that memory-based approahes treat systembehavior as deterministi. In not visiting state-ation pairs in�nitely often, there isan underlying assumption that what has been observed need not be re-observed fordi�erent behavior. In this sense there is little di�erene between how information istreated in memory-based and simulation-based approahes. In ontrast, we hooseto treat nondeterminism pessimistially. Rather than treating possible system per-turbations or errors as random, we imbue suh behavior with intelligene and designfor the worst ase. Di�erent treatment of nondeterminism will be appropriate fordi�erent tasks. It would be interesting to see memory-based reinforement learningmethods extended for Markov games and see how suh approahes work in the ontextof multi-player games.The authors stress that memory-based approahes are model-free and only on-strut loal models of behavior as is neessary. Simulation-based tehniques assumea simulatable model is given. This would again seem to be a signi�ant di�erene.However, we note that memory-based experiments relied on the use of simulations.Modi�ations to suh approahes (e.g. that deide when to perform omputationally



CHAPTER 3. SASAT GAME-TREE SEARCH 73expensive dynami programming) are neessary for physial experimental use. In ourSASAT work, we have foused on means of reduing the amount of and maximiz-ing the immediate utility of dynami programming omputation between eah ationin real-time. The algorithms desribed in [32, x7℄ are not so model-free as thosereferened in the same setion. In pratie, the authors suggest that dynami pro-gramming should be performed at the end of eah trial, or as an inremental parallelproess.What is perhaps most valuable and instrutive from their approah is the powerfuluse of predition based on previous experiene. Suh preditive interpolation basedon previous experiene ould potentially �nd powerful appliation in the alpha-betaapproahes of this hapter if storage, retrieval, and loal model onstrution did notintrodue too muh omputational overhead. For example, it is well known that nodeordering an signi�antly inrease pruning and thus the speed of alpha-beta searh.This will be seen experimentally in the next hapter. If suh predition an beeÆiently used for intelligent node-ordering, then our approah ould be signi�antlyimproved.3.8 Summary and DisussionIn this hapter, we examined three ways of using simulation and game-tree searhto inform robust ontrol of a magneti levitation ontroller. In the �rst, we useda dynami-programming approah with an augmented ell-map or game-graph. Insearhing a graph approximation of the dynami game, we redue searh time om-plexity from exponential to polynomial. Our dynami programming method for aug-mented ell maps has polynomial time and spae omplexity and is appliable too�ine ontrol design for low-dimensional state spaes, assuming that a good dis-retization an be found.Next, we disussed urrent tehniques for alpha-beta searh (without approxima-tion) and showed that the resulting ontrol poliy of earlier approximation is indeedlose to that found using alpha-beta searh. Alpha-beta pruning is a form of ir-relevane reasoning whih inreases eÆieny of minimax searh. We disussed the



CHAPTER 3. SASAT GAME-TREE SEARCH 74history of alpha-beta and the reason why it is best applied to two-player games.Finally, we ombined the best of both algorithms in an algorithm alled Game-Graph Alpha-Beta, whih has a novel form of ahing results of alpha-beta searh forfuture reuse. This provides a more eÆient means of online hybrid system ontrol forlow-dimensional state spaes, assuming that a good disretization an be found.From our experimental results we note that our hoie of disretization was for-tunate, as a depth-four (two turn) game-tree searh yields a ontrol poliy nearlyonvergent with the optimal poliy yielded by Algorithm 6 when iterated to onver-gene. As this was aidental, we do believe that future work should be done todynamially adapt disretization stepsize. First steps in this diretion are made inthe ontext of tree-searh in Chapters 5 and 6.One might ask where suh tehniques are most usefully applied. First, we observethat searh is a omplex generalization of generate-and-test optimization. Global op-timization tehniques of the previous hapter are most usefully applied to funtionsthat do not have properties assumed by more speialized tehniques that take advan-tage of suh problem-domain-spei� knowledge. In the same way, game-tree or treesearh tehniques are most usefully applied to informing intelligent ontrol of systemsthat do not have properties assumed by the more speialized tehniques of lassialontrol.Seond, we note that many tehniques of ontrol require the system to have aspei� analytial form. In ontrast to ontrol tehniques suh as feedbak lineariza-tion, we do not onstrain our system to a spei� analytial form. For most of ouralgorithms, we assume that a system simulator is given. However, the augmentedell-map tehniques we have presented require only suÆient time-series data to ap-proximate system dynamis. Furthermore, in reviewing the memory-based ontrolwork of Moore, Atkeson, and Shaal, we note that simulation an be approximatedthrough the interpolation of time-series data. From this perspetive, our tehniquesnot only enable model-based ontrol, but an also be applied without expliit modelsgiven an appropriate means of interpolating unseen system behavior.



CHAPTER 3. SASAT GAME-TREE SEARCH 75Two issues onerning minimax and alpha-beta motivate future researh in rea-soning about unertainty and relevane in game-tree searh. First, minimax searh as-sumes no unertainty in node evaluations, so small errors in node-evaluations may sig-ni�antly misinform deisions. Seond, alpha-beta pruning is onerned entirely withprovable irrelevane given suh an assumption. Without the ability to fous searhdiretion aording to probable relevane to the root deision, alpha-beta searh isill-equipped to handle large branhing fators, foring an arbitrary, pre-determinedpruning or disretization (for ontinuous ranges of ations). Automatially hoosingstate-spae or ation-spae disretizations aording to the task of real-time reasoningabout ontrol is an open problem. Even given a good disretization of a hybrid sys-tem ontrol game, a large branhing fator an fore an impratially shallow searhand yield poor deisions.Probabilisti game-playing methods [42℄ have been developed to handle uner-tainty and to diret searh with relevane to maximizing expeted utility of the de-ision. This still leaves overarhing disretization questions onerning ontinuousstate-spaes, ranges of ations, and deision points in intervals of time. In futurehapters, we show that previous work on information-based optimization (Chapter 2)will be relevant in addressing suh questions. Briey, information-based optimizationis onerned with using the information from previously sampled points to inform thehoie of future sample points. Using suh optimization to dynamially hoose thesampling of ations and deision points provides an interesting study in the tradeo�between ost and bene�t of metalevel reasoning in searh.As algorithms employ inreasingly omputationally omplex meta-level reasoning,omputational overhead will grow to the point of diminishing returns in overall utility.Over time, we expet to develop a suite of methods that lie along a spetrum ofomputational omplexities of meta-level reasoning, and desribe their appliabilityto di�erent lasses of hybrid system ontrol games. We hope that these will ontributeto development of algorithms for real-time ontrol and bounded rationality.



Chapter 4DASAT Game-Tree SearhExtending disrete searh to hybrid system searh introdues two new deisions inoptimization: ation disretization and ation timing disretization. In this hapterwe hoose to address the former deision: How ould a searh algorithm hoose how tobranh the searh tree onsidering ontinuous spaes of possible ations parameters?We will assume that ation timing, i.e. when deisions are made, is already given.From the perspetive of the searh algorithm, ation disretizations are dynami, i.e.a sample of possible ations for eah searh node is hosen by the searh algorithm.However, from the perspetive of the searh algorithm, ation timing disretizationsare stati, i.e. the searh algorithm annot a�et the ation timing disretization.For this reason, we will all suh searhes \DASAT searhes" as they have DynamiAtion and Stati Ation Timing disretization.In this hapter, we formally de�ne a DASAT Hybrid System Game and its solitairease, a DASAT Hybrid System Searh Problem. We ontinue to examine the magnetilevitation problem of the previous hapter, and ompare the relative merits of random,uniform, and information-based disretizations in the ontext of alpha-beta searh.We present information-based alpha-beta searh, a novel appliation of information-based optimization whih uses the � lower bound and � upper bound of alpha-betasearh to optimize for pruning. The resulting algorithm exeeds the good speedand pruning performane of random disretization while mathing the ontrol poliyquality of uniform disretization. 76



CHAPTER 4. DASAT GAME-TREE SEARCH 774.1 DASATHybrid SystemGame and Searh Prob-lemFormally, a DASAT Hybrid System Game is de�ned as a 7-tuplefS; s0;A; p; l;m; dgwhere� S is the hybrid state spae with a �nite number of �nite disrete variable do-mains, and a �nite-dimensional ontinuous spae,� s0 2 S is the initial state,� A is a �nite set fA1; : : : ; Ang of ontinuous ation regions indexed f1; : : : ; ng,� p is the number of players,� l : S � f1; : : : ; pg ! A0 where A0 � A is a legal move funtion mapping from astate and player number to a �nite set of legal ontinuous ation regions whihontain points representing all legal ations that may be exeuted in that stateby that player,� m : S�ap ! S�<p is a move funtion mapping from a state and simultaneousplayer ations (region index, region point pairs) to a resulting state and theutility of the ombined ations for eah player,� d : S ! S � <p is a delay funtion mapping from a state to the resulting stateand the utility of the trajetory segment for eah player. This delay governsthe evolution of the system through time between moves.The total utility of any �nite trajetory is omputed as the sum of the traje-tory move and delay utilities. In this time-invariant formalism, time an easily beenoded in a ontinuous lok variable, and time invariant behavior ould thus beeasily ahieved.



CHAPTER 4. DASAT GAME-TREE SEARCH 78Although not addressed in this hapter, a DASAT Hybrid System Searh Problemis a speial ase of the DASAT Hybrid System Game where we are interested in�nding a trajetory from the initial state to a goal state. Usually suh problems arestated in terms of path ost rather than utility. Formally, a DASAT Hybrid SystemSearh Problem is de�ned as a 7-tuplefS; s0; Sg;A; l; m; dgwhere� S is a hybrid state spae with a �nite number of �nite disrete variable domains,and a �nite-dimensional ontinuous spae,� s0 2 S is an initial state,� Sg � S is a set of goal states,� A is a �nite set fA1; : : : ; Ang of ontinuous ation regions indexed f1; : : : ; ng,� l : S ! A0 where A0 � A is a legal move funtion mapping from a state to a�nite set of legal ontinuous ation regions whih ontain points representingall legal ations that may be exeuted in that state,� m : S� a! S�< is a move funtion mapping from a state and ation (regionindex, region point pair) to a resulting state and ost of the ation,� d : S ! S � <p is a delay funtion mapping from a state to the resulting stateand the ost of the trajetory segment for eah player. This delay governs theevolution of the system through time between moves.We next desribe a DASAT Hybrid System Game in the domain of magnetilevitation.



CHAPTER 4. DASAT GAME-TREE SEARCH 794.2 DASAT Magneti Levitation ProblemThe DASAT version of the SASAT Magneti Levitation Problem of Setion 3.2 isthe same with only one modi�ation: ation disretizations are no longer given. Themagneti levitation unit an now hoose any urrent between 0.03A and 0.83A. Theadversary an now perturb the system 10% in any diretion in the position-veloityplane of the state spae.In this hapter, we fous solely on omparisons of disretization quality in theontext of alpha-beta searh. In all ases, we retain the same branhing fators ofthe disretization of the previous hapter, thus failitating ease of omparison. Threedi�erent disretizations are studied: random, uniform, and information-based.4.3 DASAT Alpha-Beta Searh with Random Dis-retizationDASAT Alpha-Beta Searh with Random Disretization is a simple augmentation ofSASAT Hybrid Alpha-Beta Searh (Setion 3.4) with moves being randomly hosenrather than given as a �xed disretization of possible ation parameter regions. Weglobally �x a maximum number of samples for eah ation parameter region. For eahreursive all of the algorithm for a node, samples are randomly hosen from ationparameter regions. For eah sampled move, a new hild (possible future node) isgenerated, reursively searhed, and results of the searh are returned. This ontinuesuntil either (1) we reah the maximum number of samples, or (2) the result of searhindiates that we an prune future searh from this node.Experimental results of DASAT Alpha-Beta Searh with Random Disretizationon the magneti levitation problem are shown in Table 4.1. Figures 4.1, 4.2, and 4.3show the ontrol poliies (mappings from position and veloity to urrent) resultingfrom searhes to depths 2, 4, and 6, respetively. From the ontrol poliy, we seethat the outputs are rough. Results of the previous hapter indiate that muh ofthe ontrol poliy spae should have urrents at extreme values. Given the randomnature of disretization, we only approximate suh extreme values.
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Figure 4.1: Maglev output urrents from DASAT Alpha-Beta with Random Dis-retization, depth 2
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Figure 4.2: Maglev output urrents from DASAT Alpha-Beta with Random Dis-retization, depth 4



CHAPTER 4. DASAT GAME-TREE SEARCH 81
Average Average Average Average AverageDepth Trials Time (mse) Nodes Pt. Pruned Nodes/Se Sore1 400 1 21 0.00 21,538 -1.59E-72 400 1 66 63.30 80,275 -1.59E-73 400 36 748 77.89 20,958 -3.43E-74 400 43 2,057 92.90 47,918 -3.42E-75 400 867 21,806 95.97 25,153 -5.73E-76 400 1,124 66,042 98.58 58,778 -5.70E-7Table 4.1: Results for DASAT Alpha-Beta Searh with Random Disretization
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Figure 4.3: Maglev output urrents from DASAT Alpha-Beta with Random Dis-retization, depth 6



CHAPTER 4. DASAT GAME-TREE SEARCH 824.4 DASAT Alpha-Beta Searh with Uniform Dis-retizationIn global optimization of Lipshitzian funtions with an unknown onstant, it hasbeen shown that a uniform grid on a ompat feasible set provides the best seletionof andidate points for optimization[51℄. In a sense, this is muh like information-based optimization over a ompat feasible set where the funtions are �nite-valuedand the target is in�nite. In this extreme ase, eah next best andidate point is thepoint whih is farthest from all previously evaluated points. Thus, from two pointsof view, uniform disretization is the best approah to hoosing a set of points forevaluation when one laks information about a funtion extreme.DASAT Alpha-Beta Searh with Uniform Disretization is another simple aug-mentation of SASAT Hybrid Alpha-Beta Searh (Setion 3.4) with moves being uni-formly hosen rather than given as a �xed disretization of possible ation parameterregions. In fat, this yields the same disretization whih was used in the previoushapter. A globally �xed maximum number of samples are uniformly hosen from thelower bound to the upper bound of a one-dimensional ation parameter region. Thegeneral ase of multidimensional, arbitrarily-shaped, losed regions is treated later inSetion 6.5. For eah ation region, the globally �xed maximum number of uniformlysampled moves are generated. For eah reursive all of the algorithm for a node, wetry eah suessive move sampled from eah suessive legal move region until either(1) all moves have been onsidered, or (2) the result of a searh indiates that we anprune future searh from this node.Experimental results of DASAT Alpha-Beta Searh with Uniform Disretizationon the magneti levitation problem are shown in Table 4.2. Figures 4.4, 4.5, and 4.6show the ontrol poliies (mappings from position and veloity to urrent) resultingfrom searhes to depths 2, 4, and 6, respetively. From the data, we an see that searhexeution is slower and pruning is less than that ahieved by random disretization.Sine the disretization is as in the previous hapter, the ontrol poliy is identialto that of alpha-beta searh of the previous hapter.Pruning is onsiderably less than that ahieved by the random disretization.
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Figure 4.4: Maglev output urrents from DASAT Alpha-Beta with Uniform Dis-retization, depth 2
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Figure 4.5: Maglev output urrents from DASAT Alpha-Beta with Uniform Dis-retization, depth 4



CHAPTER 4. DASAT GAME-TREE SEARCH 84
Average Average Average Average AverageDepth Trials Time (mse) Nodes Pt. Pruned Nodes/Se Sore1 400 1 21 0.00 19,047 -1.58E-72 400 1 113 37.34 92,395 -1.58E-73 400 51 1,957 42.11 38,154 -3.31E-74 400 69 7,156 75.31 103,378 -3.31E-75 400 1,598 81,678 84.90 51,125 -5.26E-76 400 2,145 264,020 94.31 123,112 -5.26E-7Table 4.2: Results for DASAT Alpha-Beta Searh with Uniform Disretization
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Figure 4.6: Maglev output urrents from DASAT Alpha-Beta with Uniform Dis-retization, depth 6



CHAPTER 4. DASAT GAME-TREE SEARCH 85In the spae of mappings, extreme urrent values are the most ommon output.Pruning will naturally be greater for algorithms whih sample both extremes in earlierexpansions. Information-based disretization heks extreme values �rst, randomdisretization heks randomly, and uniform disretization heks uniformly from oneextreme to another. Uniform disretization will start heking possible moves at thewrong extreme for pruning roughly half of the time that an extreme value will beoptimal for pruning. This aounts for the poor pruning results. For this problemdomain, we onjeture that a greedy node ordering heuristi would yield muh betterpruning results. We will disuss this point further in the next setion.4.5 DASAT Information-Based Alpha-Beta SearhDASAT Information-Based Alpha-Beta Searh is our third augmentation of SASATHybrid Alpha-Beta Searh (Setion 3.4) with moves being hosen aording to pre-vious hoies and their respetive subtree searh results. A pseudoode desriptionof this method is given in Algorithm 9. In alpha-beta searh, � and � represent thelower and upper bound of possible loal game-tree searh respetively. At the urrentnode under evaluation, we have a guarantee that MAX an sore at least � whileMIN will limit MAX to soring at most �. If we wish to maximize pruning, then �and � provide appropriate target values for information-based disretization.Uniform disretization provides the best disretization if our target is not bounded.Indeed, in the extreme ase where we have no guaranteed � or �, information-basedoptimization beomes uniform disretization, always hoosing the next point to befarthest from those previously evaluated. However, if we are given bounds to possiblevalues for game-tree searh, then we an use suh target values to inform intelligentsearh. Information-based optimization is a natural hoie for this appliation for tworeasons: (1) The objetive funtion (subtree evaluation) is omputationally intensiveompared to information-based optimization1, and (2) We have natural target valuesto inform optimization.1This holds for the one-dimensional ase. As we will see in Chapter 6, the omputational om-plexity of multidimensional information-based optimization an be overly burdensome.



CHAPTER 4. DASAT GAME-TREE SEARCH 86
Algorithm 9 Information-Based Alpha-Beta SearhInfo-Based-Alpha-Beta(node, player , prevGuaranteeVetor , depth). Input: urrent node,urrent player number,guaranteed player sores from previous searh (�, ��),depth of searh at node.Output: urrent node with searh resultsif (depth = 0 or leafNode(node)) thennode.abSore  sore(node)if (player = 1) thennode.abSore  �node.abSorenode.bestMove  nullreturn nodeotherPlayer  (player + 1) mod 2soreGuaranteeVetor  prevGuaranteeVetorbestMove  nullbestSore  �1foreah region in legalMoveRegions(node, player) dooptimizer  new InfoBasedOptimizer(region,�prevGuaranteeVetor[otherPlayer℄)for i  1 to regionSamples(region) dopoint  nextPoint(optimizer)move  reateMove(region.index , point)hild  nextTurn(makeMove(lone(node), move), player)hild  Info-Based-Alpha-Beta(hild, otherPlayer , soreGuaranteeVetor ,depth � 1)sore  �hild.abSoreif (bestMove = null or sore > bestSore) thenbestMove  movebestSore  soreif (bestSore � �prevGuaranteeVetor[otherPlayer℄) thengoto pruneif (bestSore > soreGuaranteeVetor[player℄) thensoreGuaranteeVetor[player℄  bestSoreaddData(optimizer , point , sore)prune:node.abSore  bestSorenode.bestMove  bestMovereturn node



CHAPTER 4. DASAT GAME-TREE SEARCH 87Rather than write two proedures for the two players, Algorithm 9 uses negamaxrepresentation. Algorithm 9 takes as input the urrent searh node and player, theguaranteed sore bounds from previous searh (represented as (�, ��)), and the depthof searh remaining. It returns the urrent node with searh results (best sore andmove). If the node is at terminal searh depth or is a leaf node, then we evaluate thenode sore (negated for the adversary) and return.After initializing variables, we perform an information-based optimization on eahation parameter region for a prede�ned sample limit. If, before we reah that samplelimit, an evaluated subtree yields a sore whih indiates that a rational player willnot allow play through the urrent node (i.e. the lower bound exeeds the upperbound), then all remaining searh is unneessary and we prune it.For eah information-based optimization, we pik a point in the ation parameterregion, reate a move and hild node resulting from that move, and perform a reursiveall to searh the subtree rooted at that hild. The return results are negated beauseof our negamax representation; eah player maximizes negated sores of the otherplayer. If the return sore is the best yet, we reord it. If it also a�ets � or �, weupdate the guarantees and prune if appropriate. At the end of eah iteration, wesupply the return data to the information-based optimization for use in hoosing amove for the next iteration.Experimental results of DASAT Information-Based Alpha-Beta Searh on themagneti levitation problem are shown in Table 4.3. Figures 4.7, 4.8, and 4.9 showthe ontrol poliies (mappings from position and veloity to urrent) resulting fromsearhes to depths 2, 4, and 6, respetively. From the data, we an see that searh ex-eution is faster and pruning is greater than that ahieved by random disretization.From the ontrol poliies, we see that the results are very similar to those ahievedby uniform disretization. The quality of ontrol poliies will be explored further inthe next setion as we play these methods against one another.One �nal important note about this hapter onerns a omparison to uniform dis-retization with node ordering. In pratie, the heuristi of ordering subtree searhesaording to the preferred sore/utility of hild nodes an be a soure of signi�-ant speedup. One might wonder when suh a tehnique would be preferred to this
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Figure 4.7: Maglev output urrents from DASAT Information-Based Alpha-Beta,depth 2
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Figure 4.8: Maglev output urrents from DASAT Information-Based Alpha-Beta,depth 4



CHAPTER 4. DASAT GAME-TREE SEARCH 89
Average Average Average Average AverageDepth Trials Time (mse) Nodes Pt. Pruned Nodes/Se Sore1 400 1 21 0.00 18,667 -1.58E-72 400 1 52 71.14 35,354 -1.58E-73 400 30 497 85.30 16,295 -3.31E-74 400 40 1,243 95.71 31,157 -3.31E-75 400 719 16,787 96.90 23,347 -5.26E-76 400 1,081 55,185 98.81 51,032 -5.26E-7Table 4.3: Results for DASAT Information-Based Alpha-Beta Searh
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Figure 4.9: Maglev output urrents from DASAT Information-Based Alpha-Beta,depth 6



CHAPTER 4. DASAT GAME-TREE SEARCH 90information-based approah and vie versa. The answer is simple: If the problem do-main is suh that loal sores are poor indiators of the relative quality of moves, theninformation-based optimization would be preferred. Information-based optimizationhooses suessive points based on full evaluations of subtrees so performane is notdegraded by poor loal information. However, if the loal sores of immediate hildrenprovide good indiation of the relative quality of moves, then uniform disretizationwith node ordering may be simpler and preferable.4.6 Comparison of MethodsIn omparing these algorithms to one another, let us �rst turn our attention towardse�etive branhing fator redution. The atual branhing fator may vary onsid-erably when searhing to a �xed depth d. In the ase of the maglev problem, theatual branhing fator for a full searh alternates between 20 and 8 on suessivelevels. One desires a simple means of omparing the e�etive branhing of searhgiven depth and node ount.The e�etive branhing fator b is de�ned as the branhing fator for whih 1+b+b2+: : :+bd equals the node ount[34℄. That is, b is the branhing fator that e�etivelyresults in the same searh node ount for a given searh depth. A omparison ofe�etive branhing fators for eah algorithm on the maglev problem is given inTable 4.4. E�etive Branhing Fator b % of Full bDepth Random Uniform Info-Based No Prune Random Uniform Info-Based1 20.00 20.00 20.00 20.00 100 100 1002 7.58 10.09 6.66 12.93 59 78 523 8.72 12.16 7.56 14.66 60 83 524 6.46 8.93 5.66 12.78 51 70 445 7.16 9.39 6.78 13.81 52 68 496 6.17 7.83 5.99 12.74 48 61 47Table 4.4: Comparison of E�etive Branhing Fator Redution



CHAPTER 4. DASAT GAME-TREE SEARCH 91Information-based Alpha-Beta Searh yields signi�antly lower e�etive branh-ing fators than alpha-beta with either random or uniform disretization. Uniformdisretization yields the highest e�etive branhing fators. As mentioned in the pre-vious setion, a node ordering heuristi would address this weakness for the maglevproblem sine loal information is a good indiator of relative long-term quality ofations.Previous experimentation is not adequate for omparing the relative quality ofthe resulting ontrol poliies. If any searh happened to perform a good ontrollersearh and poor adversary searh, it would appear to be a stronger game-tree searhalgorithm than it is. For this reason, we have played eah algorithm against eahother algorithm in order to give a true omparison of relative strength.At eah sampled position and veloity point in a uniform 20� 20 grid, we play agame where eah algorithm searhes to depth four in hoosing four suessive moves.One algorithm hooses moves for the ontroller and the other hooses moves for theadversary. The two algorithms are swithed and the proess is repeated.Results for random versus uniform disretization are given in Table 4.5. On av-erage, searh with random disretization takes 47% of the time taken using uniformdisretization while searhing 26% of the nodes. Negative player sores are trajetoryosts. Searh with uniform disretization yields lower ost trajetories on average andthus better quality play.Average Average Average Average AveragePlayer Trials Time (mse) Nodes Pt. Pruned Nodes/Se SoreRandom 400 99.87 2,946 89.83 29.50 -3.41E-7Uniform 400 214.16 11,533 60.20 53.86 -3.31E-7Table 4.5: Results for Random versus Uniform DisretizationResults for random versus information-based disretization are given in Table 4.6.On average, searh with information-based disretization takes 67% of the time takenusing random disretization while searhing 92% of the nodes. Information-BasedAlpha-Beta Searh yields better play than Alpha-Beta with Random Disretization.
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Average Average Average Average AveragePlayer Trials Time (mse) Nodes Pt. Pruned Nodes/Se SoreRandom 400 99.94 2,950 89.82 29.52 -3.40E-7Info-Based 400 66.76 2,722 90.61 40.77 -3.31E-7Table 4.6: Results for Random versus Information-Based DisretizationResults for uniform versus information-based disretization are given in Table 4.7.On average, searh with information-based disretization takes 34% of the time takenusing uniform disretization while searhing 26% of the nodes. Information-BasedAlpha-Beta Searh and Alpha-Beta Searh with Uniform Disretization yield roughlyequivalent quality play. Average Average Average Average AveragePlayer Trials Time (mse) Nodes Pt. Pruned Nodes/Se SoreUniform 400 218.99 11,341 60.87 51.79 -3.31E-7Info-Based 400 73.68 2,924 89.91 39.68 -3.31E-7Table 4.7: Results for Uniform versus Information-Based Disretization4.7 ConlusionsIn the beginning of this hapter, we formalized DASAT Hybrid System Games andDASAT Hybrid Systems Searh Problems. We ontinued study of the magneti lev-itation problem of Zhao, whih takes a game-theoreti approah using an adversaryto model worst-ase e�ets of bounded model error, numerial simulation error, envi-ronmental perturbation, et. In this hapter, we removed the assumption of havinggiven ation parameter region disretizations, and studied three di�erent ways ofdynamially disretizing ation parameter regions.Information-based alpha-beta is a novel appliation of information-based opti-mization whih uses the � lower bound and � upper bound of alpha-beta searh to



CHAPTER 4. DASAT GAME-TREE SEARCH 93optimize for pruning. The resulting algorithm exeeded the good speed and pruningperformane of random disretization while mathing the ontrol poliy quality ofuniform disretization.It should be noted that uniform disretization with a node ordering heuristishould perform quite well in problem domains where loal sore information is a goodlong-term indiator of relative move quality. In ontrast, Information-Based Alpha-Beta Searh is not prone to poor loal sore information, as deisions are based onthe results of full subtree searh.We next address hybrid system searh problems where ation timing disretiza-tions are not given.



Chapter 5SADAT SearhExtending disrete searh to hybrid system searh introdues two new deisions inoptimization: ation disretization and ation timing disretization. In this hapterwe hoose to address the latter deision: How ould a searh algorithm hoose whento branh the searh tree and onsider possible ations? We will thus assume thatontinuous ation spaes are already disretized. From the perspetive of the searhalgorithm, ation disretizations are stati, i.e. the searh algorithm annot a�et theation disretization. However, from the perspetive of the searh algorithm, ationtiming disretizations are dynami, i.e. branhing points are hosen by the searhalgorithm. For this reason, we will all suh searhes \SADAT searhes" as they haveStati Ation and Dynami Ation Timing disretization.In this hapter, we will formally de�ne a SADAT Hybrid System Game and itssolitaire ase, a SADAT Hybrid System Searh Problem. A submarine detetionavoidane problem is introdued as a fous for designing real-time ontrol delibera-tion. We present iterative re�nement, a new searh algorithm perhaps most simplydesribed as similar to iterative deepening searh within a limited time interval. Wealso present a new variation on best-�rst searh whih allows for more exible ationtiming. Then, we show how iterative re�nement an work quite well under heuristimonotoniity and admissibility assumptions. Finally, we introdue �-optimal IterativeRe�nement Reursive Best-First Searh. 94



CHAPTER 5. SADAT SEARCH 955.1 SADATHybrid SystemGame and Searh Prob-lemFormally, a SADAT Hybrid System Game is de�ned as a 7-tuplefS; s0; A; p; l;m; dgwhere� S is the hybrid state spae with a �nite number of �nite disrete variable do-mains, and a �nite-dimensional ontinuous spae,� s0 2 S is the initial state,� A is the �nite disrete ation spae,� p is the number of players,� l : S � f1; : : : ; pg ! fa1; : : : ; ang 2 A is a legal move funtion mapping from astate and player number to a �nite set of legal ations whih may be exeutedin that state by that player,� m : S�Ap ! S�<p is a move funtion mapping from a state and simultaneousplayer ations to a resulting state and the utility of the ombined ations foreah player,� d : S�<+ ! S�<p is a delay funtion mapping from a state and non-negativetime delay to the resulting state and the utility of the trajetory segment foreah player. We require that d(s; 0) = fs; f0; : : : ; 0gg. Letting d(s1; t1) =fs2; fu1;1; : : : ; u1;pgg and d(s2; t2) = fs3; fu2;1; : : : ; u2;pgg, we also require thatd(s1; t1 + t2) = fs3; fu1;1 + u2;1; : : : ; u1;p + u2;pgg.The total utility of any �nite trajetory is omputed as the sum of the traje-tory move and delay utilities. In this time-invariant formalism, time an easily beenoded in a ontinuous lok variable, and time invariant behavior ould thus beeasily ahieved.



CHAPTER 5. SADAT SEARCH 96A SADAT Hybrid System Searh Problem is a speial ase of the SADAT HybridSystem Game where we are interested in �nding a trajetory from the initial stateto a goal state. Usually suh problems are stated in terms of path ost rather thanutility. Formally, a SADAT Hybrid System Searh Problem is de�ned as a 7-tuplefS; s0; Sg; A; l;m; dgwhere� S is a hybrid state spae with a �nite number of �nite disrete variable domains,and a �nite-dimensional ontinuous spae,� s0 2 S is an initial state,� Sg � S is a set of goal states,� A is a �nite disrete ation spae,� l : S ! fa1; : : : ; ang 2 A is a legal move funtion mapping from a state to a�nite set of legal ations whih may be exeuted in that state,� m : S � A ! S � < is a move funtion mapping from a state and ation to aresulting state and ost of the ation,� d : S�<+ ! S�<p is a delay funtion mapping from a state and non-negativetime delay to the resulting state and the ost of the trajetory segment. We re-quire that d(s; 0) = fs; f0; : : : ; 0gg. Letting d(s1; t1) = fs2; fu1;1; : : : ; u1;pgg andd(s2; t2) = fs3; fu2;1; : : : ; u2;pgg, we also require that d(s1; t1+ t2) = fs3; fu1;1+u2;1; : : : ; u1;p + u2;pgg.We next desribe a SADAT Hybrid System Searh Problem in the domain ofsubmarine tatial planning for detetion avoidane.



CHAPTER 5. SADAT SEARCH 975.2 Submarine Channel ProblemThe Submarine Channel Problem is not unlike a SegaTM video game of the 1980'salled Frogger. A submarine seeks a path through a hannel suh that it avoids beingdeteted by a number of patrolling ships.5.2.1 The Submarine Tatial Planning AssistantThe hoie of this problem is motivated by the submarine tatial planning assistanework of Thomas C. Smith and David P. Watson (Johns Hopkins Laboratory AppliedPhysis Laboratory (JHUAPL)) and Peter W. Jaobus (SONALYSTS, In.)[46℄. TheGenerative Layer of their Tatial Planning Assoiate[46, x 2.4.2℄ uses Reursive Best-First Searh (RBFS)[25℄ to \produe an ordered set of way-points that insribe anoptimal path through a �eld of preditably moving and stationary obstales havingarbitrary avoidane areas." See Figure 5.1 for a sreenshot of the interfae.Further details of the problem representation were obtained through personalorrespondene with Adam V. Peterson of JHUAPL. The ation spae is disretizedwith 8 headings and 3 speeds (full speed, half speed, stop). The ation timing spaeis disretized as well aording to a uniform simulation update interval. The problemis formulated as a disrete searh.Enemy vessels eah have inner and outer detetion radii. Within the irle de-�ned by the vessel position and inner detetion radius, the submarine is deteted andpenalized heavily. Beyond the irle de�ned by the outer detetion radius, the sub-marine is safe from detetion. Between the irles, probability of detetion inreasesalong with an assoiated penalty for suh risk. Speed and patrol trajetories of enemyvessels are known a priori. There is neither unertainty nor hange in enemy vesselpatrolling; this is a solitaire game of perfet information.In using RBFS, the heuristi weight is set to 1.75, and the ost to the urrent stateis the sum of the time to the urrent state and a penalty alulated if the submarinehas passed within the outer radius of a ship.
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Figure 5.1: Tatial Planning Assoiate Man-Mahine Interfae illustrating Genera-tive Layer, from [46, Figure 6℄5.2.2 The SADAT Submarine Channel ProblemWe have hosen a spei� lass of submarine tatial planning problems for ease ofadjusting diÆulty. Just as the n2 � 1 sliding tile puzzle has served as a benhmarkfor disrete searh tehniques, we have hosen a simple problem easily saled andmodi�ed for greater diÆulty.In the Submarine Channel Problem, the submarine starts at position (x; y) = (0; 0)with eastward heading and at full stop. To the east along an east-west hannel ofwidth w (entered along y = 0) are n ships patrolling aross the width of the hannel.This is pitured in Figure 5.2.
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Figure 5.2: Submarine Channel ProblemEah ship j has an inner detetion radius ri;j and an outer detetion radius ro;j.Within a proximity of ri;j, ship j will detet the submarine and the submarine willbe penalized with a detetion penalty. Within a proximity of ro;j and beyond ri;j, thesubmarine inurs a proximity penalty saling linearly from 0 at the outer radius tothe full detetion penalty at the inner radius. Beyond the outer radius, there is nopenalty. If the submarine ollides with the sides of the hannel, there is a ollisionpenalty. In the ase of ollision or detetion, the submarine is halted and allowedno further legal moves. The �rst ship patrols at an x-o�set xO�set1 of ro;1. Eahship i thereafter has xO�seti = xO�seti�1 + 3ri;i�1 + ri;i. Ship i has a patrollingroute de�ned by yling linearly between the following points: (xO�seti; w=2� ri;i),



CHAPTER 5. SADAT SEARCH 100(xO�seti + 2ri;i; w=2� ri;i), (xO�seti + 2ri;i;�w=2 + ri;i), and (xO�seti;�w=2 + ri;i).Eah ship begins at a given perentage along this yle. For n ships, the goal statesare all states within the hannel with x > xO�seti+2ri;n+ ro;n, i.e. all hannel pointsto the right of the rightmost outer detetion radius.The submarine an travel in 8 headings (multiples of �=4 radians), and 3 speeds:full speed, half speed, and full stop. Together these de�ne 17 distint ations the sub-marine an take at any point whih it has inurred neither ollision nor full detetionpenalty.1 Eah ship travels at a single prede�ned speed.For this hapter, we have hosen w = 1 length unit. The outer radius of everyship is 0:2w. The inner radius of eah ship is 0:1w. The maximum veloity of thesubmarine is w=(1 time unit). All ship veloities are also w=(1 time unit). Ships arestarted at random perentages through their patrol yles. The detetion penaltyis set at 10000. Figure 5.3 shows a demonstration software animation frame from asolution to an instane of the 4-ship problem.Sine we use SADAT Iterative Re�nement Searh (x 5.3) as a baseline for om-parison, we hose a number of ships suh that it would be hallenging for IterativeRe�nement to �nd a solution within 10 seonds in our experimental ontext. Allprogramming was done in Java2, and all experimentation was done in MS-DOS usinga Dell Dimension XPS T450 with a 450 MHz Pentium CPU. It was found that the10-ship problem (Figure 5.4) was suÆiently hallenging for Iterative Re�nement soas to serve as a useful hallenge problem for SADAT and DADAT searhes.5.3 SADAT Iterative Re�nement SearhIn this setion, we limit searh to a �xed time horizon tf . For these approahes, westart with the simplest of searh trees over the time interval: a searh tree of depthone with a root at the initial state, a branh for eah legal ation and leaves at t = tf .1Sine we assume disrete, instantaneous hanges to headings and speeds, all full stop ationsare e�etively equivalent.2Programming was done with minimal optimization, sine rapid prototyping and larity weredesired.
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Figure 5.3: Submarine Channel Problem Demo, 4 ShipsThis tree, pitured leftmost in Figure 5.5, represents the possible outomes if theagent were to only at at t = 0.With standard tree searh tehniques, a searh tree is grown by expanding leafnodes. One looks forward from leaf nodes to further inform one's ation. Startingwith our simple searh tree, there is no need to look forward. We are evaluating allpossible trajetories with respet to nodes at the searh time horizon, and we havealready looked forward to the searh time horizon. Rather, we wish to look within.There are many ways one an hoose ation timings to searh possible trajetoriesfrom t = 0 to t = tf . We begin with a simple method alled Iterative Re�nementwhih is perhaps most simply desribed as similar to iterative deepening searh withina limited time interval.Like iterative deepening, Iterative Re�nement onsists of a series of searhes. Eahsearh is a depth-�rst searh where the tree is branhed at a set of time points. In
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Figure 5.4: Submarine Channel Problem Demo, 10 Ships

Figure 5.5: Iterative Re�nement



CHAPTER 5. SADAT SEARCH 103the ith iteration, iterative re�nement breaks the time interval [0; tf ℄ into i equaltime intervals and performs a searh to depth i. The resulting searh is pitured inFigure 5.5. The algorithm pseudoode is shown in Algorithms 10 and 11. It has thesame omputational time and spae omplexity as iterative deepening: O(bd) andO(d) respetively, where b is e�etive branhing fator, and d is maximum searhdepth.Algorithm 10 SADAT Iterative Re�nement Depth-First SearhSADATIterativeRefinementDFS(rootNode, initialDelay, re�nementLimit). Input: root node,initial list of branhing times,limit on number of re�nement iterations.Output: best leaf node at time horizonbestNode  nullre�nement  1while (not re�nement > re�nementLimit) donewBestNode  SADAT-DFS(rootNode, initialDelay=re�nement, re�nement)if (bestNode = null or g(newBestNode) < g(bestNode)) thenbestNode  newBestNodere�nement  re�nement + 1return bestNodeAlgorithm 11 SADAT Depth-First SearhSADAT-DFS(node, delay, depthLimit). Input: searh node,simulation delay,depth of searh below node.Output: best subtree leaf node at time horizonif (depthLimit = 0) thenreturn nodebestNode  nullforeah move m[i℄ of legalMoves(node) dohild  wait(makeMove(lone(node), m[i℄), delay)newBestNode  SADAT-DFS(hild , delay, depthLimit � 1)if (bestNode = null or g(newBestNode) < g(bestNode)) thenbestNode  newBestNodereturn bestNodeThe results, shown in Table 5.1, are generally poor, ranging from 0 to 47 perent



CHAPTER 5. SADAT SEARCH 104depending on the given time horizon. While the rate of nodes/se is relatively muhhigher than other approahes, the primary problem with suh a searh is that eahiteration searhes the full tree. The branhing fator and e�etive branhing fatorof eah searh is the same. A lot of unneessary searh is done quikly, and the netresult is weak.Time Time to Goal Cost to GoalHorizon Results % Goal Min Avg Max Min Avg Max Nodes/Se4.20 100 0 N/A N/A N/A N/A N/A N/A 10,2714.83 100 1 10.06 10.06 10.06 4.82 4.82 4.82 9,2325.46 100 14 10.02 10.04 10.08 4.79 5.17 5.45 8,3296.09 100 15 10.02 10.04 10.06 4.99 5.44 5.85 7,9556.72 100 47 10.02 10.04 10.08 5.07 6.11 6.69 7,3037.35 100 0 N/A N/A N/A N/A N/A N/A 7,831Table 5.1: Results for SADAT Simple Iterative Re�nement DFSIf we modify Algorithm 10 suh that searh terminates as soon as a goal node isfound, we observe the results shown in Table 5.2. Although searh returns with a goalnode muh more frequently, the utility of the trajetory to the goal node is generallypoor. On average the submarine inurs high proximity penalties along the trajetory.Without goal node termination, the algorithm returns the lowest ost trajetory tothe time horizon for the entire iterated searh. Iterative re�nement depth-�rst searhwith goal node termination o�ers no suh solution quality guarantee. All futurealgorithms of this hapter have some form of solution quality guarantee.Simple iterative re�nement searh is presented as a baseline for omparison forthe SADAT searh tehniques that follow. In eah suessive subsetion, we make atradeo� of assumed a priori knowledge versus performane.5.4 SADAT Best-First SearhIn this setion, we introdue a novel variation of Best-First Searh (BFS) whih allowslimited exibility in varying ation timing. We begin by desribing a simpli�ed version



CHAPTER 5. SADAT SEARCH 105Time Time to Goal Cost to GoalHorizon Results % Goal Min Avg Max Min Avg Max Nodes/Se4.20 100 4 0 0.01 0.03 2,090 5,745 8,911 9,4704.83 100 33 0 1.23 4.93 5 6,661 9,906 8,6085.46 100 84 0 1.01 9.05 5 6,313 10,001 7,6466.09 100 89 0 2.22 9.91 5 6,851 9,927 7,2346.72 100 100 0 1.62 7.32 5 6,714 10,000 6,5137.35 100 60 0 0.73 2.92 2,090 7,793 9,996 7,362Table 5.2: Results for SADAT Simple Iterative Re�nement DFS with Goal NodeTerminationof the algorithm in order to ommuniate both key onepts of the searh and thereason for the limitation in timing exibility.As BFS is a heuristi searh, we assume the existene of a heuristi evaluationfuntion to estimate the ost from any state to a goal state. Suh information isused to make the searh seletive, i.e. to diret searh in the diretion whih is esti-mated to have the \optimal" solution. The term \optimal" may be rightly used ina disrete setting, but in this ontinuous problem domain, the searh is generally in-omplete and therefore at most an approximation to optimal behavior. Theoretially,given unbounded omputing resoures, as the step-size approahes zero, an admissible(underestimating) heuristi funtion would give a solution approahing the optimalsolution.For the Submarine Channel Problem, there is a very simple heuristi estimate ofost to goal state: the x distane to the end of the patrolled region divided by themaximum submarine speed.5.4.1 Simple SADAT Best-First SearhA detailed desription of Best-First Searh (BFS) an be found in [41, x 4.1℄. Afuntion f 0 is de�ned over all nodes as the sum of the ost funtion g and the heuristifuntion h0. Whereas g(n) is the path ost from the root node to n, h0(n) is an estimateof the minimum ost from n to a goal node. For eah node n, f 0(n) = g(n) + h0(n).



CHAPTER 5. SADAT SEARCH 106The aents of f 0 and h0 indiate that they are estimates of the unknown atualevaluation funtions f and h. Starting with a heap ontaining only the root, best-�rst searh iteratively selets the minimum node aording to f 0 and heks to see ifthat node is a goal node. If so, it terminates. If not, it evaluates all hildren of thenode, plaes them in the heap, and repeats the proess.In our variation of BFS, we (1) assume a given largest time-step between ations,and (2) rede�ne node expansion to allow new open nodes along existing branhes.Regarding (1), we take as a parameter �t, a real-valued number of time units, whihserves as a default delay time between an expanded node and its new leaf hildren.Regarding (2), we rede�ne node expansion for three ases: the root node ase, leafnode ase, and internal node ase. These ases orrespond respetively to a nodehaving no parent and no hildren, having a parent and no hildren, and having aparent and a hild. One an prove indutively that these are the only three aseswhih an our for our method of expansion.Simple SADAT Best-First Searh pseudoode is given in Algorithms 12{15 . Itbegins as normal BFS with the root node in the open heap. With eah iteration,the node with the lowest f 0(node) is extrated from the heap. If the node is a goalnode, the algorithm terminates with suess. Otherwise, its hildren are generatedand plaed on the open heap. The key di�erene is how new nodes are generated.For a root node, we simply generate its hildren. Eah hild is omputed by loningits parent, making the assoiated legal move, and simulating forward �t. The hildis then plaed in a heap aording to f 0(hild). This is pitured in the �rst transitionof Figure 5.6.For a leaf node, there is a slight di�erene. In addition to generating its hildren,we also generate a new parent node halfway (with respet to time delay) between theleaf node and its urrent parent node. This is pitured in the seond transition ofFigure 5.6.For an internal node, there is yet another di�erene. In addition to generatingnew hildren, i.e. all hildren but its single existing hild, and a new parent (as withthe leaf node), it generates a new hild halfway between itself and its pre-existinghild. This is pitured in the third transition of Figure 5.6.
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Algorithm 12 SADAT Simple Best-First SearhSADAT-Simple-BFS(root). Input: root node.Output: goal node if one exists, otherwise no terminationnode  rootnode.parent  nullnode.hild  nullwhile (not isGoal(node)) doif (node.parent = null) then. Root node asesimple-expand-root(node, empty-heap)elseif (node.hild = null) then. Leaf node asesimple-expand-leaf(node, heap)else. Internal node asesimple-expand-internal-node(node, heap)node  extratMin(heap)return node
Algorithm 13 Simple Expansion of RootSimple-Expand-Root(node, heap). Input: root node,heap of unexpanded nodes.Output: noneforeah move m[i℄ of legalMoves(node) dohild  wait(makeMove(lone(node), m[i℄), delay)hild.parent  nodehild.hild  nullhild.previousDelay  delayinsert(heap, hild , f(hild))
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Algorithm 14 Simple Expansion of LeafSimple-Expand-Leaf(node, heap). Input: leaf node,heap of unexpanded nodes.Output: noneforeah move m[i℄ of legalMoves(node) dohild  wait(makeMove(lone(node), m[i℄), delay)hild.parent  nodehild.hild  nullhild.previousDelay  delayinsert(heap, hild , f(hild))newParent  wait(lone(node.parent), node.previousDelay=2)newParent.parent  node.parentnewParent.hild  nodenewParent.previousDelay  node.previousDelay=2node.parent.hild  newParentnode.parent  newParentinsert(heap, newParent , f(newParent))

Figure 5.6: SADAT Best-First Searh
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Algorithm 15 Simple Expansion of Internal NodeSimple-Expand-Internal-Node(node, heap). Input: internal node,heap of unexpanded nodes.Output: noneforeah non-null move m[i℄ of legalMoves(node) dohild  wait(makeMove(lone(node), m[i℄), delay)hild.parent  nodehild.hild  nullhild.previousDelay  delayinsert(heap, hild , f(hild))newParent  wait(lone(node.parent), node.previousDelay=2)newParent.parent  node.parentnewParent.hild  nodenewParent.previousDelay  node.previousDelay=2node.parent.hild  newParentnode.parent  newParentinsert(heap, newParent , f(newParent))newChild  wait(lone(node), node.hild.previousDelay=2)newChild.parent  nodenewChild.hild  node.hildnewChild.previousDelay  node.hild.previousDelay=2node.hild.parent  newChildnode.hild  newChildinsert(heap, newChild , f(newChild))



CHAPTER 5. SADAT SEARCH 110The �rst important thing to note about this algorithm is that it allows a morere�ned temporal searh than best-�rst searh with a �xed delay. This is both astrength and a weakness under di�erent irumstanes. While it an sometimes betterapproximate optimal solutions or �nd solutions whih annot be found without suhre�nement, one an easily generate pathologial ases where SADAT Simple Best-First Searh annot �nd solutions whih an be found using best-�rst searh with a�xed delay.The seond important thing to note is one suh signi�ant pathologial ase whihmotivates the �nal piee of the full algorithm. Suppose we have the ase where ourost funtion g monotonially inreases along any path of the searh tree, and ourfuntion f 0 always underestimates atual ost to a goal node through any non-goalnode. Without looking far, we easily �nd an example: any submarine hannel problemwith h0(n) = 0 for all n.Given an f 0 with suh harateristis, then for any open (non-expanded) node n1preeding another open node n2 along a path, f 0(n1) < f 0(n2). Put simply, earlierpossibilities always look better along a path in the tree. The rami�ation of this fatand our method of node expansion, is that this ase will result in in�nite re�nementfrom a root hild bak toward the root.Given these harateristis, the best node generated by the best root hild willbe the new parent between the root and that hild. The best node generated by thenew parent will be its new parent, and so forth in�nitely. Clearly, suh a method hasneed of some means to restrit path re�nement so that suh in�nite re�nement doesnot trap the searh in a loal minimum.5.4.2 SADAT Best-First Searh with Re�nement LimitsOne simple means of restriting re�nement is to limit the number of re�nements per-formed along any path. More spei�ally, we keep ount of the number of times a newinternal node was introdued in order to make a given path possible. Algorithmially,we assoiate with eah node n a re�nement level n.re�nementLevel. The root has a re-�nement level of 0. A new leaf hild inherits the re�nement level of its parent. A new



CHAPTER 5. SADAT SEARCH 111internal node n0 generated by node n has a re�nement level of n.re�nementLevel+1.The full algorithm of SADAT Best-First Searh (Algorithms 16{19) is Simple SA-DAT Best-First Searh augmented with the node re�nement levels and the restritionthat new nodes with re�nement levels whih would exeed a given re�nement limitare not generated. The worst-ase omputational time and spae omplexity of SA-DAT Best-First Searh is bounded by that of a Best-First Searh performed on thefull SADAT Best-First Searh tree with maximal re�nement. If f never overesti-mates the ost to a goal node, then Best-First Searh is alled A� and is known tobe both optimal[9℄ and omplete3[41℄ in searhing the tree. However, omputationaltime omplexity is still exponential unless error in the heuristi funtion has a growthrate less than the logarithm of the atual path ost[35℄. However, the most importantomplexity issue for modern omputing is that of omputational spae omplexity.Exponential growth of the heap exhausts memory resoures in little time for mod-ern omputers. One way of dealing with exponential omplexity is use of reursivebest-�rst searh, whih is disussed in Setion 5.6.Results for the 10-Ship Submarine Channel Problem are shown in Table 5.3. Forthese trials, �t was arbitrarily set to 1=4 of the initial distane to goal divided bythe maximum submarine speed. The general tradeo� to note here is that of qualityversus speed of solution. While more re�nement yields better average solutions, fewersuh solutions are found within the allotted 10-seond time limit.Re�nement Time to Goal Cost to GoalLimit Results % Goal Min Avg Max Min Avg Max Nodes/Se0 100 82 0.01 1.31 9.60 4.88 7.14 9.17 2681 100 77 0.02 1.24 8.32 4.88 6.75 8.15 4182 100 78 0.03 1.71 7.12 4.88 6.36 7.44 4583 100 57 0.06 1.75 6.09 4.81 5.92 6.64 455Table 5.3: Results for SADAT Best-First Searh, �t = 1:05What this data does not show is how sensitive the performane is to the hoie of3Completeness is proven on loally �nite graphs.
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Algorithm 16 SADAT Best-First SearhSADAT-BFS(root). Input: root node.Output: goal node if one exists, otherwise no terminationnode  rootnode.parent  nullnode.hild  nullnode.re�nementLevel  0while (not isGoal(node)) doif (node.parent = null) then. Root node aseexpand-root(node, empty-heap)elseif (node.hild = null) then. Leaf node aseexpand-leaf(node, heap)else. Internal node aseexpand-internal-node(node, heap)node  extratMin(heap)return node
Algorithm 17 Expansion of RootExpand-Root(node, heap). Input: root node,heap of unexpanded nodes.Output: noneforeah move m[i℄ of legalMoves(node) dohild  wait(makeMove(lone(node), m[i℄), delay)hild.parent  nodehild.hild  nullhild.previousDelay  delayhild.re�nementLevel  node.re�nementLevelinsert(heap, hild , f(hild))
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Algorithm 18 Expansion of LeafExpand-Leaf(node, heap). Input: leaf node,heap of unexpanded nodes.Output: noneforeah move m[i℄ of legalMoves(node) dohild  wait(makeMove(lone(node), m[i℄), delay)hild.parent  nodehild.hild  nullhild.previousDelay  delayhild.re�nementLevel  node.re�nementLevelinsert(heap, hild , f(hild))newParent  wait(lone(node.parent), node.previousDelay=2)newParent.parent  node.parentnewParent.hild  nodenewParent.previousDelay  node.previousDelay=2newParent.re�nementLevel  node.re�nementLevel + 1node.parent.hild  newParentnode.parent  newParentinsert(heap, newParent , f(newParent))
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Algorithm 19 Expansion of Internal NodeExpand-Internal-Node(node, heap). Input: internal node,heap of unexpanded nodes.Output: noneforeah non-null move m[i℄ of legalMoves(node) dohild  wait(makeMove(lone(node), m[i℄), delay)hild.parent  nodehild.hild  nullhild.previousDelay  delayhild.re�nementLevel  node.re�nementLevelinsert(heap, hild , f(hild))newParent  wait(lone(node.parent), node.previousDelay=2)newParent.parent  node.parentnewParent.hild  nodenewParent.previousDelay  node.previousDelay=2newParent.re�nementLevel  node.re�nementLevel + 1node.parent.hild  newParentnode.parent  newParentinsert(heap, newParent , f(newParent))newChild  wait(lone(node), node.hild.previousDelay=2)newChild.parent  nodenewChild.hild  node.hildnewChild.previousDelay  node.hild.previousDelay=2newChild.re�nementLevel  node.re�nementLevel + 1node.hild.parent  newChildnode.hild  newChildinsert(heap, newChild , f(newChild))



CHAPTER 5. SADAT SEARCH 115�t. Looking at Tables 5.4 and 5.5, we see that performane is very dependent on thehoie of �t.Re�nement Time to Goal Cost to GoalLimit Results % Goal Min Avg Max Min Avg Max Nodes/Se0 100 100 0.01 0.40 7.09 5.10 7.08 10.99 1861 100 100 0.02 0.43 7.29 5.10 6.83 9.59 3532 100 99 0.00 0.70 7.75 5.10 6.53 8.60 3593 100 97 0.03 1.03 7.57 5.10 6.31 7.62 359Table 5.4: Results for SADAT Best-First Searh, �t = 1:40Re�nement Time to Goal Cost to GoalLimit Results % Goal Min Avg Max Min Avg Max Nodes/Se0 250 0.8 0.04 0.04 0.04 7.22 7.60 7.98 3481 250 0.8 0.05 0.07 0.09 7.22 7.60 7.98 3592 250 1.6 0.12 1.70 6.11 6.51 8.05 10.48 1093 250 2.0 0.13 1.02 4.07 5.05 6.56 8.78 215Table 5.5: Results for SADAT Best-First Searh, �t = 1:51SADAT Best-First Searh provides a novel means of �nding better solutions thanan be found with Best-First Searh with a �xed delay. This omes at a ost of timeto solution, however, so that this algorithm is better suited to o�ine appliationsthan real-time ontrol. It should also be noted that both of these best-�rst searhalgorithms have exponential omputational spae omplexity.5.5 SADAT Iterative Re�nement with Strong Prun-ing, Node Ordering, and Upper BoundIn previous experimentation with Iterative Re�nement, we saw that performane waspoor, but not as sensitive to hoie of time horizon as SADAT Best-First Searh. As



CHAPTER 5. SADAT SEARCH 116long as the goal was within the time horizon and the time horizon did not extend toofar, the algorithm was more forgiving of an uninformed parameter hoie.In this setion, we introdue a variant of Iterative Re�nement whih trades o�generality for performane. By making a few simple assumptions about our problemdomain for pruning, and applying heuristi node ordering, we ahieve onsiderablespeedup. The main novelty lies in how information from one iteration is used forpruning in the next.Weak and Strong Pruning: Unlike iterative deepening and other standardsearh algorithms, the root node evaluation we are approximating through searh isthe minimum f 0-value of all nodes on the horizon. After the �rst path to a leaf issearhed, we have a best path ending with a best leaf nbest.If we assume that our ost funtion g is monotonially inreasing, then we anprune subtrees rooted at any node n suh that g(n) > f 0(nbest). Further, suh pruningonditions an be arried from one iteration to the next, sine all searhes are withrespet to the same time horizon. Put simply, eah better path we �nd fouses thesearh thereafter through all iterations.In this ontext, we refer to the assumption that g is monotonially inreasing asa \weak" assumption. We refer to the assoiated pruning as \weak" pruning. Thestronger assumption that an be made is that f 0 is monotonially inreasing. Thenwe an prune subtrees rooted at any node n suh that f 0(n) > f 0(nbest). We refer tothis assumption and pruning as \strong".Node Ordering: A standard tehnique for speeding up searh is alled nodeordering. The basi intuition is that one orders the expansion of nodes in suh a wayas to have greater probability of �nding a goal node sooner. In order for the ost ofsuh ordering to be bene�ial, the ordering tehnique must inur little omputationalost. A ommon tehnique whih is used here is to simply expand a node's hildrenin inreasing order of their f 0-values. Note that this heuristi omplements our desireto inrease pruning.Upper Bound: Finally, we note that for this problem domain, not every solutionis a good solution. While the simulator halts the movement of the submarine whenit passes within any inner radius of a ship, it does not halt the submarine when it



CHAPTER 5. SADAT SEARCH 117has passed within the outer radius and reeived a proximity penalty. Thus, somesolutions are poor solutions.Speifying an allowable upper bound on solution ost not only ensures that It-erative Re�nement will not stop with an undesired solution, it also aids searh byproviding pruning onditions from the beginning of searh.Iterative Re�nement with Strong Pruning, Node Ordering, and Upper Bound isdesribed in pseudoode in Algorithms 20 and 21.Algorithm 20 SADAT Iterative Re�nement with Strong Pruning, Node Ordering,and Upper BoundSADATIRwSPNOUB(rootNode, initialDelay, re�nementLimit , upperBound). Input: root node,initial list of branhing times,limit on number of re�nement iterations,upper bound on solution ost.Output: goal node with ost beneath upper bound if found,best leaf node found otherwiseglobalUpperBound  upperBoundglobalGoalFound  falseglobalBestNode  nullre�nement  1while (not globalGoalFound and not re�nement > re�nementLimit) doSADAT-DFS-SPNOUB(rootNode, initialDelay=re�nement , re�nement)re�nement  re�nement + 1return globalBestNodeTrials for the 10-Ship Submarine Channel Problem were performed with an upperbound ost of 10. This would mean that allowable solutions ould only pass a verysmall amount within the outer radius of a ship on the way to a solution. Results aregiven in Table 5.6.One key point to observe from these results is the tradeo� of generality in theform of domain knowledge for performane. However, this tradeo� should be madewhen it an, as suh assumptions about f 0 an often be either proven or enforedin the design of f 0. Solutions tend to be found more quikly with this tehniquethan other tehniques seen so far, so it is well suited to real-time tatial planningassistane. Compared to the omputational gains, we have traded o� little in the way



CHAPTER 5. SADAT SEARCH 118Algorithm 21 SADAT Depth-First Searh with Strong Pruning, Node Ordering,and Upper BoundSADAT-DFS-SPNOUB(node, delay , depthLimit). Input: searh node, simulation delay, and depth of searh below node.Output: noneif (isGoal(node)) thenglobalGoalFound  trueglobalBestNode  nodereturnif (depthLimit = 0 or numOfChildren(node) = 0) thenif (f(node) < f(globalBestNode)) thenglobalBestNode  nodereturnforeah move m[i℄ of legalMoves(node) dohild[i℄  wait(makeMove(lone(node), m[i℄), delay)Sort hild[i℄ in inreasing order of f(hild[i℄)i  1done  falsewhile (not done and not globalGoalFound) do. Do not expand a node with f-value exeeding the global upper boundif (f(hild[i℄) > globalUpperBound) thendone  trueelseSADAT-DFS-SPNOUB(hild[i℄ , delay, depthLimit � 1)i  i + 1if (i > numOfChildren(node)) thendone  truereturn Time to Goal Cost to GoalTime Horizon Results % Goal Min Avg Max Min Avg Max Nodes/Se4.20 500 0.0 N/A N/A N/A N/A N/A N/A 9384.83 500 57.4 0.06 2.08 10.40 4.29 4.68 4.83 5985.46 500 88.2 0.04 1.73 10.06 4.40 5.05 5.45 4116.09 500 93.6 0.11 2.21 10.30 4.40 5.46 6.09 3156.72 500 95.6 0.07 1.35 10.20 4.73 6.01 6.72 2817.35 500 92.8 0.06 1.87 10.46 4.99 6.36 7.35 281Table 5.6: Results for SADAT Iterative Re�nement with Strong Pruning, Node Or-dering, and Upper Bound



CHAPTER 5. SADAT SEARCH 119of generality.Another key point to observe are the onditions under whih the algorithm anreliably �nd a solution. We must hoose an appropriate time horizon for whihsolutions are not so rare that our searh is likely to �nd one. From this data onemight think that one has only to hoose a large enough time horizon to guaranteegood results. However, it is also the ase that one an hoose too large a time horizon.Considering this Submarine Channel Problem, assuming that there is no straight-linesolution through the patrolling ships, then there is a searh delay parameter abovewhih no solution exists. Given a time limit, one may set the time horizon suÆientlyhigh as to have all searh within the time limit performed with delay parameters toohigh to �nd a solution. Put simply, if the time horizon is too high, then the granularityof searh is too high, and there is a performane penalty.5.6 SADAT Iterative Re�nement with ReursiveBest-First SearhIn Setion 5.4, we saw that Best-First Searh tehniques have unfavorable, exponen-tial spae omplexity. In [25℄, Rihard Korf introdued a linear spae omplexityalgorithm alled Reursive Best-First Searh (RBFS) whih expands new nodes insame order as Best-First Searh and thus has the same optimality guarantees. RBFSwas the tehnique of hoie for the Submarine Tatial Planning Assistant desribedin Setion 5.2.1.In this Setion, we introdue an approximately optimal version of RBFS for SA-DAT problems, alled SADAT �-RBFS. We show that its performane is very sensi-tive to the input delay parameter. We then introdue SADAT Iterative Re�nement�-RBFS. Compared to other general-appliability SADAT algorithms whih do notrequire a monotoniity assumption, SADAT Iterative Re�nement �-RBFS yields thebest behavior with the least sensitivity to initial parameters.



CHAPTER 5. SADAT SEARCH 1205.6.1 SADAT � - Reursive Best-First Searh with Fixed De-layIn order to apply Reursive Best-First Searh (RBFS) to ontinuous domains, thereare two issues whih must �rst be addressed. The �rst onerns ation timing dis-retization. In this setion, we hoose the simplest solution and assume that for anyall to RBFS, a �xed delay is used to generate hildren.The seond issue to address is the nature of oating point node evaluations. Thiswas not an issue in Best-First Searh, beause nodes are only expanded one. RBFSuses a loal ost threshold for eah reursive depth-�rst searh all. The ost thresholdis updated using the least ost value of frontier nodes beyond the threshold. If thesame subtree is searhed again, it is with this updated value. In this way, nodes areexpanded in best-�rst order, using a depth-�rst tehnique whih an expand the samenode many times. This is a tradeo� of omputational time for spae.The fat that so many nodes will have distint oating-point osts means thatnodes will be expanded many times more than in disrete domains where evaluationsare integer-valued and in a onentrated distribution. This same issue arises whenapplying iterative deepening searh to ontinuous domains.The way this issue is dealt with for iterative deepening tehniques in omplexdomains is to inrease the iterative deepening ost limit by a �xed amount � on eahiteration. Then the total number of iterations is proportional to 1=� and the algorithmis alled �-admissible[41, x 4.3, IDA*℄.We an do something similar for RBFS. When eah subtree is searhed and thehild is replaed in the heap, we make sure that its evaluation is inreased by at least�. �-RBFS is given in pseudoode in Algorithm 22.The result of applying �-RBFS to the 10-Ship Submarine Channel Problem isshown in Table 5.7. Observing these results, one is struk by the extreme sensitivityof the searh suess to the �xed delay parameter.



CHAPTER 5. SADAT SEARCH 121Algorithm 22 SADAT � - Reursive Best-First SearhSADATeRBFS(node, nodeF , bound , delay, espilon). Input: node, alling stored searh value of node, loal ost upper bound,simulation delay, and epsilon minimum bound inrement.Output: return stored searh value of nodeif (f(node) > bound) thenreturn f(node)if (isGoal(node)) thengoalNode  nodeexit algorithmif (numOfChildren(node) = 0) thenreturn 1foreah move m[i℄ of legalMoves(node) do[i℄  wait(makeMove(lone(node), m[i℄), delay)if (f(node) < nodeF ) thenF[i℄  max(nodeF , f([i℄))elseF[i℄  f([i℄)insert(heap, [i℄ , F[i℄)f, Fg  extratMin(heap)while (F � bound and F <1) do. The new loal upper bound must inrease by at least epsilon.if (numofChildren(node) > 1) thenF  max(SADATeRBFS(, F , min(bound , minValue(heap))), F + epsilon)elseF  max(SADATeRBFS(, F , bound), F + epsilon)insert(heap, , F )f, Fg  extratMin(heap)return F5.6.2 SADAT Iterative Re�nement with � - Reursive Best-First SearhThe sensitivity of the suess of �-RBFS to the delay parameter motivates an attemptto use �-RBFS with di�erent delays. In this setion, we apply the idea of iterativere�nement to �-RBFS and �nd that the resulting algorithm has exellent performaneaross a broad range of initial parameters.In Setion 3.2 of [25℄, Korf direts the user of RBFS to make a top-level all toRBFS with an upper bound of1. Indeed, an upper bound of1 makes perfet sense



CHAPTER 5. SADAT SEARCH 122Time to Goal Cost to GoalDelay Results % Goal Min Avg Max Min Avg Max Nodes/Se1.00 500 99.4 0.00 0.41 10.02 4.70 6.28 8.99 496.121.25 500 91.0 0.01 0.29 4.93 5.01 7.13 9.90 423.401.50 500 0.2 0.05 0.05 0.05 7.95 7.95 7.95 349.711.75 500 0.4 0.03 0.06 0.10 5.95 7.70 9.45 234.24Table 5.7: Results for SADAT � - Reursive Best-First Searh, � = 0:25when one has only one possible searh spae. In our ase, we have in�nite ways ofdisretizing ation timing, and therefore in�nite possible spaes to explore.Keeping with the priniple of trying simple solutions �rst, we seek to reapply theidea of Iterative Re�nement to �-RBFS. However, if we use an upper-bound of1, the�rst iteration with the initial delay will never terminate if it does not �nd a solution.Fortunately, Korf's algorithm is designed suh that it also makes sense to use valuesother than 1 in the top-level all.If we simply provide an upper bound on ost as we did with Iterative Re�nementwith Strong Pruning, Node Ordering, and Upper Bound, then we have an algorithmwhih does an �-admissible searh of all nodes within the ost upper bound on eahiteration, suessively re�ning until the granularity is �ne enough for a solution to befound within that bound if it exists. Iterative Re�nement with �-RBFS is desribedin pseudoode in Algorithm 23.Algorithm 23 SADAT Iterative Re�nement with � - Reursive Best-First SearhSADATIReRBFS(rootNode, bound , initialDelay, espilon, re�nementLimit). Input: root node, upper bound on solution ost,initial simulation delay, epsilon minimum bound inrement,limit on number of re�nement iterations.Output: goal node if solution found, null if notgoalNode  nullre�nement  1while (goalNode = null and not re�nement > re�nementLimit) doSADATeRBFS(rootNode, f(rootNode), bound , initialDelay=re�nement, espilon)re�nement  re�nement + 1return goalNode



CHAPTER 5. SADAT SEARCH 123The result of applying Iterative Re�nement with �-RBFS to the 10-Ship SubmarineChannel Problem is shown in Table 5.8. Now we are able to ahieve exellent resultsaross a broad range of initial delay values.Initial Time to Goal Cost to GoalDelay Results % Goal Min Avg Max Min Avg Max Nodes/Se4.20 100 99 0.08 0.28 3.66 5.10 7.03 9.63 379.624.83 100 91 0.11 0.73 4.75 4.98 7.16 9.74 421.165.46 100 100 0.17 0.51 5.92 5.08 7.06 9.98 357.036.09 100 92 0.27 0.64 5.82 4.99 7.09 9.86 419.846.72 100 95 0.20 0.58 6.05 5.07 6.96 9.77 401.767.35 100 95 0.37 0.82 9.64 4.99 7.18 10.00 403.07Table 5.8: Results for SADAT Iterative Re�nement with � - Reursive Best-FirstSearh, � = 0:25In ontrast to Iterative Re�nement with Strong Pruning, Node Ordering, andUpper Bound, we do not need to make any assumptions about properties of f 0 forthis algorithm to be appliable. We also do not need to be onerned with piking alarge enough time horizon, sine our searh is not limited to a time horizon.Furthermore, Iterative Re�nement with �-RBFS provides a guarantee for the qual-ity of the solution: Given initial delay �t and admissible f 0, then any solution returnedby the algorithm on iteration i will have a ost at most � above the optimal solutionin the full tree with delay �t=i. If one an further prove a bound on the approxi-mate optimality of the searh tree of eah iteration, then one an skip overly oarseiterations and set loal �i parameters for �ner iterations suh that one an guarantee�-optimal solutions.SADAT Iterative Re�nement with � - Reursive Best-First Searh provides a gen-eral, eÆient, and suessful method for SADAT searh provided one an supply auseful heuristi evaluation funtion f 0 and an initial delay parameter whih does notmake searh overly oarse or overly �ne. As one an see in Table 5.8, the initial delayparameter an vary onsiderably and still allow exellent performane.



CHAPTER 5. SADAT SEARCH 1245.7 Summary and ConlusionsIn the beginning of this hapter, we formalized SADAT Hybrid System Games andSADAT Hybrid Systems Searh Problems. After desribing the urrent SubmarineTatial Planning Assistane work of Smith, Jaobus, and Watson, we de�ned a lassof problems for use as a benhmark in omparing approahes to SADAT searh.We �rst introdued SADAT Iterative Re�nement Searh, a generally appliablemethod whih limits searh to a time horizon with iteratively �ner timing granularity.While performane is relatively poor with respet to the other algorithms of thishapter, this non-seletive, brute-fore searh serves as a good baseline for omparison.In ontrast to the researh of this and the next hapter, almost all tree-based searhresearh assumes a �xed ation timing disretization. A small amount of researhonerning searh with di�erent timing granularities has been presented within theabstration, reformulation, and approximation researh ommunity. However, aftersearhing literature and talking with several experts in robotis searh and AI, itappears that iterative re�nement with respet to a time horizon is unique.SADAT Best-First Searh is a novel variation of Best-First Searh. Although oneould argue that Geneti Algorithms allow branhes to be split through mutation,SADAT Best-First Searh appears to be the �rst systemati searh to split branhesand dynamially generate new internal nodes. This is ontrasted with hierarhialdeomposition in planning where suh \internal" nodes are prede�ned. While per-forming muh better than SADAT Iterative Re�nement, SADAT Best-First Searhshowed a tradeo� of time to solution versus quality of solution. As suh, it is bet-ter suited to o�ine design appliations than real-time ontrol appliations. UnlikeSADAT Iterative Re�nement, SADAT Best-First Searh and all the following algo-rithms of this hapter require a heuristi evaluation funtion f 0 whih takes eah nodeas input and returns an estimate of the ost to reah a goal node through that node.For our problem domain, a simple heuristi is easy to ome by, but in general a goodheuristi is not neessarily straightforward.Next, we augmented SADAT Iterative Re�nement Searh with strong pruning,



CHAPTER 5. SADAT SEARCH 125node ordering, and an upper bound on solution ost. Strong pruning and node or-dering are standard searh speedup tehniques. However, our use of the upper boundis novel and interesting. Sine this tree searh is unusual in that all iterations searhwith respet to the same time horizon, the upper bound does not merely fous searhwithin an iteration as inreasingly better leaf nodes are found. It also fouses searhaross all searhes in future iterations. Ability to �nd solutions to the 10-Ship Subma-rine Channel Problem was exellent for a broad seletion of time horizons. However,this algorithm assumes that (1) one knows a good time horizon a priori, and (2)that f 0 monotonially inreases and is admissible. Generality of appliability is againtraded o� for performane.Finally, we presented a new �-admissible variant of Reursive Best-First Searh(�-RBFS). Seeing that its performane is very sensitive to the initial time delay, wemake novel use of the �-RBFS upper bound input parameter and again apply iter-ative re�nement, The resulting algorithm, Iterative Re�nement with �-RBFS, hadexellent performane aross a broad range of input parameters. Furthermore, thesolution omes with a guarantee that it has a ost at most � greater than the optimalsolution in the full tree of the last iteration. All of this omes without the monotoni-ity assumption of SADAT Iterative Re�nement Searh with Strong Pruning, NodeOrdering, and Upper Bound.Thus, we have made a series of novel forays into a new and hallenging lass ofsearh problems. Notie that these approahes make very few assumptions aboutthe problem domain beyond the simulation model. Most robotis navigation andmotion planning algorithms make good use of the struture and onstraints of therobot and environment. Generally speaking, the more one an eÆiently make useof knowledge and struture of a problem domain, the greater the performane ofthe approah. \Knowledge is power." These algorithms seek to make minimal useof domain-spei� knowledge in order to provide general kernels from whih manyfuture advanes an grow.One possible future diretion is to dynamially disretize ation timing aordingto a measure of \quiesene", or lak of immediate hange in sore. If the problem



CHAPTER 5. SADAT SEARCH 126domain an provide an indiation of the importane of ation frequeny (e.g. dis-tane to a threat for the submarine problem), then we have an additional soure ofknowledge to levy for searh eÆieny. In the future, we hope to identify simple waysof improving dynami disretization without on�ning ourselves to narrow problemdomains.In the next hapter, we apply these same general ation timing disretization ideasto problems where we do not assume a given ation disretization.



Chapter 6DADAT SearhExtending disrete searh to hybrid system searh introdues two new deisions inoptimization: ation disretization and ation timing disretization. In this hapterwe hoose to address both deisions: How ould a searh algorithm hoose both whenand how to branh the searh tree in order to onsider possible ations? From theperspetive of the searh algorithm, both ation disretization and ation timing dis-retization are dynami, i.e. both disretizations are hosen by the searh algorithm.For this reason, we will all suh searhes \DADAT searhes" as they have DynamiAtion and Dynami Ation Timing disretization.In this hapter, we formally de�ne a DADAT Hybrid System Game and its solitairease, a DADAT Hybrid System Searh Problem. We ontinue to examine the subma-rine hannel problem, and ompare the relative merits of random, information-based,and dispersed disretizations in augmenting the iterative re�nement searhes of theprevious hapter. The dispersed disretization is presented as a ompromise betweenthe fast speed of random disretization, and the intelligent, slow deision proedureof information-based disretization. We �nd that the orientation of the headings inthe given disretization of the previous hapter is very signi�ant to performane.Dispersed disretization yields far better results than the given disretization of theprevious hapter with randomly-rotated submarine headings.
127



CHAPTER 6. DADAT SEARCH 1286.1 DADATHybrid SystemGame and Searh Prob-lemFormally, a DADAT Hybrid System Game is de�ned as a 7-tuplefS; s0;A; p; l;m; dgwhere� S is the hybrid state spae with a �nite number of �nite disrete variable do-mains, and a �nite-dimensional ontinuous spae,� s0 2 S is the initial state,� A is a �nite set fA1; : : : ; Ang of ontinuous ation regions indexed f1; : : : ; ng,� p is the number of players,� l : S � f1; : : : ; pg ! A0 where A0 � A is a legal move funtion mapping from astate and player number to a �nite set of legal ontinuous ation regions whihontain points representing all legal ations that may be exeuted in that stateby that player,� m : S�ap ! S�<p is a move funtion mapping from a state and simultaneousplayer ations (region index, region point pairs) to a resulting state and theutility of the ombined ations for eah player,� d : S�<+ ! S�<p is a delay funtion mapping from a state and non-negativetime delay to the resulting state and the utility of the trajetory segment foreah player. We require that d(s; 0) = fs; f0; : : : ; 0gg. Letting d(s1; t1) =fs2; fu1;1; : : : ; u1;pgg and d(s2; t2) = fs3; fu2;1; : : : ; u2;pgg, we also require thatd(s1; t1 + t2) = fs3; fu1;1 + u2;1; : : : ; u1;p + u2;pgg.An ation is represented by the index f1; : : : ; ng of the relevant ation spae, anda point within the spae. The total utility of any �nite trajetory is omputed as the



CHAPTER 6. DADAT SEARCH 129sum of the trajetory move and delay utilities. In this time-invariant formalism, timean easily be enoded in a ontinuous lok variable, and time invariant behaviorould thus be easily ahieved.A DADAT Hybrid System Searh Problem is a speial ase of the DADAT HybridSystem Game where we are interested in �nding a trajetory from the initial stateto a goal state. Usually suh problems are stated in terms of path ost rather thanutility. Formally, a DADAT Hybrid System Searh Problem is de�ned as a 7-tuplefS; s0; Sg;A; l; m; dgwhere� S is a hybrid state spae with a �nite number of �nite disrete variable domains,and a �nite-dimensional ontinuous spae,� s0 2 S is an initial state,� Sg � S is a set of goal states,� A is a �nite set fA1; : : : ; Ang of ontinuous ation regions indexed f1; : : : ; ng,� l : S ! A0 where A0 � A is a legal move funtion mapping from a state to a�nite set of legal ontinuous ation regions whih ontain points representingall legal ations that may be exeuted in that state,� m : S� a! S�< is a move funtion mapping from a state and ation (regionindex, region point pair) to a resulting state and ost of the ation,� d : S�<+ ! S�<p is a delay funtion mapping from a state and non-negativetime delay to the resulting state and the ost of the trajetory segment. We re-quire that d(s; 0) = fs; f0; : : : ; 0gg. Letting d(s1; t1) = fs2; fu1;1; : : : ; u1;pgg andd(s2; t2) = fs3; fu2;1; : : : ; u2;pgg, we also require that d(s1; t1+ t2) = fs3; fu1;1+u2;1; : : : ; u1;p + u2;pgg.



CHAPTER 6. DADAT SEARCH 1306.2 DADAT Submarine Channel ProblemThe DADAT version of the SADAT Submarine Channel Problem of Setion 5.2 isthe same with only one modi�ation. The submarine may now turn to any headingand travel at any speed up to its maximum speed. Thus the sole legal ation regionis a irle entered at the origin with radius equal to the magnitude of the maximumspeed. Any point within the irle de�nes a legal heading and speed for the submarine.As the algorithms in this hapter are variations of previous SADAT searh algo-rithms with di�erent means of seleting ations, we will be judging suh means withrespet to the previous results where an expliit ation disretization is given. In allases, we will use the previous branhing fator of 17 so that in omparing DADATsearh results to SADAT searh results, we an learn something of the quality of thedynami ation disretizations.6.3 DADAT Iterative Re�nement with RandomAtion DisretizationIn this setion, we introdue a simple variation of SADAT Iterative Re�nement withStrong Pruning, Node Ordering, and Upper Bound (x 5.5) in whih we randomlysample ations from the legal ation regions. In addition to the previous parameters,we require the aller to indiate the number of samples used to sample eah ationregion. Thus, the pseudoode is as shown in Algorithms 24 and 25.In omparing the results of DADAT Iterative Re�nement with Random AtionDisretization in Table 6.1 with the algorithm's SADAT ounterpart in Table 5.6, themost notiable di�erene is that a larger time horizon is needed for the algorithm toahieve omparable suess. This is due in part to two main reasons.First, the given SADAT disretization had eight ations at full speed in di�er-ent headings. If one were to ompare maximum speeds and headings of paths inour SADAT searhes and this DADAT searh, one would notie a muh di�erentdistribution. The SADAT searh will searh faster trajetories than those randomlygenerated from possible legal moves.
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Algorithm 24 DADAT Iterative Re�nement with Strong Pruning, Node Ordering,Upper Bound, and Random DisretizationDADAT-IR-SPNOUB-Random(rootNode, initialDelay, re�nementLimit ,upperBound , sampleVetor). Input: root node,initial list of branhing times,limit on number of re�nement iterations,upper bound on solution ost,vetor of samples for eah possible ation parameter region.Output: goal node with ost beneath upper bound if found,best leaf node found otherwiseglobalUpperBound  upperBoundglobalGoalFound  falseglobalBestNode  nullre�nement  1while (not globalGoalFound and not re�nement > re�nementLimit) doDADAT-DFS-SPNOUB-Random(rootNode, initialDelay=re�nement,re�nement, sampleVetor)re�nement  re�nement + 1return globalBestNode
Time Time to Goal Cost to GoalHorizon Results % Goal Min Avg Max Min Avg Max Nodes/Se4.20 100 0 N/A N/A N/A N/A N/A N/A 1,231.644.83 100 1 0.30 0.30 0.30 4.76 4.76 4.76 1,200.955.46 100 38 0.07 3.27 10.06 4.96 5.29 5.46 928.316.09 100 61 0.10 2.26 10.07 5.01 5.77 6.09 770.256.72 100 73 0.08 2.74 10.06 5.14 6.24 6.71 656.717.35 100 84 0.16 3.09 10.08 5.38 6.79 7.35 584.01Table 6.1: Results for DADAT Iterative Re�nement with Random Ation Disretiza-tion
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Algorithm 25 DADAT Depth-First Searh with Strong Pruning, Node Ordering,Upper Bound, and Random DisretizationDADAT-DFS-SPNOUB-Random(node, delay, depthLimit , sampleVetor). Input: searh node,simulation delay,depth of searh below node, andvetor of samples for eah possible ation parameter regionif (isGoal(node)) thenglobalGoalFound  trueglobalBestNode  nodereturnif (depthLimit = 0 or legalMoveRegions(node) = null) thenif (f(node) < f(globalBestNode)) thenglobalBestNode  nodereturnhildCount  0foreah move region r[i℄ of legalMoveRegions(node) dofor i  1 to sampleVetor[r[i℄.index℄ dohildCount  hildCount + 1hild[hildCount℄  wait(makeMove(lone(node), randomMove(r[i℄)), delay)Sort hild[i℄ in inreasing order of f(hild[i℄)i  1done  falsewhile (not done and not globalGoalFound) do. Do not expand a node with f-value exeeding the global upper boundif (f(hild[i℄) > globalUpperBound) thendone  trueelseDADAT-DFS-SPNOUB-Random(hild[i℄ , delay, depthLimit � 1)i  i + 1if (i > hildCount) thendone  truereturn



CHAPTER 6. DADAT SEARCH 133Seond, most solutions found by SADAT searhes tend to run due east along thetop bank, varying speed as neessary to time passing between patrolling ships just asa person walks through an automati revolving door. In previous experimentation,optimal trajetories often ontained segments where the submarine was heading dueeast at full speed. In randomly generating headings and speeds, the searh will notalways be presented with a similar ation, and thus will not �nd solutions as optimalor as often.It would be desirable to see how muh the derease in performane of these resultsis due to not having the SADAT disretization's full-speed ations versus not havingthe SADAT disretization's due-east ations. One way would be to randomly rotatethe SADAT disretization and see the resulting performane. Another way would beto add an additional linear move region onsisting of di�erent speeds with a due-eastheading. Allotting samples to a seond move region would amount to providingadditional domain knowledge for searh. In keeping with a desire for maximumgenerality, we will use the former means rather than the latter.The results of using SADAT Iterative Re�nement with Strong Pruning, NodeOrdering, and Upper Bound with random rotations of the original ation disretiza-tion are shown in Table 6.2. From these results, it is immediately apparent that theorientation of our original disretization was very signi�ant. Neither approah isbetter for all hosen time horizons. While random disretization is learly dominatedby the original disretization, it is roughly omparable to the randomly rotated dis-retization. The random disretization suess rate for �nding solutions peaks at agreater time horizon than that of the randomly rotated disretization. With ran-dom disretization, the average ation speed will be less than that of the rotateddisretization, neessitating a greater time horizon on average for solutions.
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Time Time to Goal Cost to GoalHorizon Results % Goal Min Avg Max Min Avg Max Nodes/Se4.20 100 0 N/A N/A N/A N/A N/A N/A 1,120.864.83 100 26 0.12 4.63 10.04 4.43 4.74 4.83 923.825.46 100 61 0.24 3.35 10.04 4.71 5.26 5.45 740.126.09 100 73 0.23 3.71 9.87 4.44 5.67 6.08 599.266.72 100 67 0.09 3.94 9.94 4.91 6.11 6.72 538.887.35 100 49 0.17 4.42 10.04 4.88 6.50 7.33 513.83Table 6.2: Results for SADAT Iterative Re�nement with Strong Pruning, Node Or-dering, Upper Bound, and Randomly Rotated Ation Disretization6.4 DADAT Iterative Re�nement with Information-Based Ation DisretizationIn this setion, we take a di�erent approah to the seletion of ations for searh.Rather than seleting them randomly, we apply information-based optimization. Thepseudoode is given in Algorithms 26{29.When applied to the DADAT Submarine Channel Problem, this algorithm was notable to solve any of the 100 problem instanes with any of the 6 di�erent time horizons.In the DASAT work of Chapter 4, we saw the bene�t of applying Information-BasedOptimization to the hoie of ations in alpha-beta searh. In the Magneti LevitationProblem, we were interested in o�ine design where a single one-dimensional ationregion de�ned possible ontrol ations, i.e. possible solenoid urrent settings. In onedimension, information-based optimization allows for diret alulation of the nextbest point to evaluate.In this DASAT Submarine Channel Problem, the ation spae is two-dimensional.Thus we must use the andidate-sampling multidimensional version of Information-Based Optimization whih selets random andidate points and performs alulationswith respet to every previously evaluated point to hek for shadowing and slope to agoal value at the andidate point. To review details of the algorithm, see Setion 2.7.



CHAPTER 6. DADAT SEARCH 135Algorithm 26 DADAT Iterative Re�nement with Strong Pruning, Node Ordering,Upper Bound, and Information-Based DisretizationDADAT-IR-SPNOUB-IB(rootNode, initialDelay, re�nementLimit,upperBound , sampleVetor). Input: root node,initial list of branhing times,limit on number of re�nement iterations,upper bound on solution ost,vetor of samples for eah possible ation parameter region.Output: goal node with ost beneath upper bound if found,best leaf node found otherwiseglobalUpperBound  upperBoundglobalGoalFound  falseglobalBestNode  nullre�nement  1while (not globalGoalFound and not re�nement > re�nementLimit) doDADAT-DFS-SPNOUB-IB(rootNode, initialDelay=re�nement,re�nement, sampleVetor)re�nement  re�nement + 1return globalBestNodeAlgorithm 27 DADAT Depth-First Searh with Strong Pruning, Node Ordering,Upper Bound, and Information-Based DisretizationDADAT-DFS-SPNOUB-IB(node, delay, depthLimit , sampleVetor). Input: searh node,simulation delay,depth of searh below node, andvetor of samples for eah possible ation parameter region.Output: exat or lower bound value through nodeif (isGoal(node)) thenglobalGoalFound  trueglobalBestNode  nodereturn f(node)if (depthLimit = 0 or legalMoveRegions(node) = null) thenif (f(node) < f(globalBestNode)) thenglobalBestNode  nodereturn f(node)foreah move region r[i℄ of legalMoveRegions(node) doinit-IB-Optimizer(optimizer[i℄ , r[i℄ , sampleVetor[r[i℄.index℄, globalTargetValue)fmoveChoie[i℄, hild[i℄g  IB-NextChild(node, optimizer[i℄ , delay)return DADAT-DFS-SPNOUB-IB-expand(node, optimizer , moveChoie,hild , delay)
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Algorithm 28 IB-NextChild Proedure for Algorithms 27 and 29IB-NextChild(node, optimizer , delay). Input: parent node,information-based optimizer for move region, andsimulation delay.Output: hosen move parameters, andbest next hild node to expand aord to info-based optimization. nextChoie returns null when optimizer sample limit is reahedmoveChoie  nextChoie(optimizer[i℄)if (not moveChoie = null) thenmove  reateMove(optimizer.region.index , moveChoie)hild  wait(makeMove(lone(node), move), delay)elsehild  nullreturn fmoveChoie, hildg
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Algorithm 29 Child Expansion Proedure for Algorithm 27DADAT-DFS-SPNOUB-IB-expand(node, optimizer , moveChoie, hild , delay). Input: urrent node,information-based optimizers for move regions,andidate move hoies for move regions,assoiated hild hoies for move regions, andsimulation delay.Output: goal node with ost beneath upper bound if found,best leaf node found otherwisenextBestF  1hildNum  -1foreah hild[i℄ doif (not hild[i℄ = null and f(hild[i℄) < nextBestF ) thennextBestF  f(hild[i℄)hildNum  idone  hildNum = -1fMin  1while (not done and not globalGoalFound) do. Do not expand a node with f-value exeeding the global upper boundif (nextBestF > globalUpperBound) then. If pruned, use f-value as return valuereturnValue  nextBestFelsereturnValue  DADAT-DFS-SPNOUB-IB(hild[hildNum℄, delay,depthLimit � 1)if (returnValue < fMin) thenfMin  returnValueaddData(optimizer[hildNum℄ , moveChoie[i℄, returnValue)fmoveChoie[hildNum℄, hild[hildNum℄g IB-NextChild(node, optimizer[hildNum℄ , delay)nextBestF  1hildNum  -1foreah hild[i℄ doif (not hild[i℄ = null and f(hild[i℄) < nextBestF ) thennextBestF  f(hild[i℄)hildNum  idone  hildNum = -1return fMin



CHAPTER 6. DADAT SEARCH 138Multidimensional information-based optimization has greater omputational om-plexity than that of the one dimensional ase beause of the hek for shadowing. Thehigh omputational overhead expended in the intelligent seletion of ations for searhoutweighed the bene�t of the intelligent seletion for our real-time problem. However,this algorithm may prove useful in problem domains with smaller branhing fatorswhere intelligent sampling has a high payo� in searh eÆieny or solution quality.6.5 DADAT Iterative Re�nement with DispersedAtion DisretizationWe have seen that random sampling is omputationally inexpensive, yet the sam-pling is inferior to the given ation disretization for the SADAT Submarine ChannelProblem. We have also seen that information-based optimization makes intelligenthoies, yet the omputational omplexity of information-based optimization makesit unsuitable for this real-time problem domain. We are presented with a tradeo� be-tween omputational eÆieny and the utility of suh omputation. One would desirea ompromise between the strengths of random and information-based disretizationwhih would eho the intuition behind the hoie of the SADAT disretization withoutinurring suh omputational ost for eah node expansion.In seeking a ompromise, we note that information-based minimization of a �nite-valued funtion with a target value of �1 will yield a set of points, eah of whih is asfar as possible from the previous points. See Figure 6.1. If one were to perform suhan optimization for a irular area with the �rst point on the edge of the irle, theseond point would be diretly aross the irle. The third and fourth points wouldbe diretly aross from eah other rotated 90 degrees from the �rst and seond points.The �fth point would be farthest from the previous four in the enter. The followingfour points would be hosen in positions rotated 45 degrees from the �rst four. Thefollowing eight would be hosen at enters of irles irumsribing triangles formedby the enter point and losest pairs of edge points.Given a starting point on the edge of the irular move region, the �rst 17 points
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Figure 6.1: Information-Based Optimization point hoies for a �nite values and anin�nite target, on�ned to a irular regionof information based minimization with a target of �1 look remarkably like theSADAT ation disretization. One needs only to slightly inrease the speeds of thehalf-speed moves and rotate their headings 22.5 degrees. The point here is that theintuitive hoie of the SADAT ation disretization ehoes a mathematially well-founded hoie of information-based optimization with an in�nite target.If we ould have our algorithm dynamially and eÆiently ompute a disretiza-tion with points as far away from eah other as possible, we would expet muhimprovement. While a detailed investigation of suh tehniques is beyond the sopeof this dissertation, we have implemented a simple point dispersion tehnique basedon simulating repulsive eletrial fores.The basi idea of \dispersed" disretization is to take a number of randomlysampled points from the ation region and simulate them as if they were point hargesmutually repelling eah other with fore proportional to the inverse square of theirdistane. The point dispersion algorithm pseudoode is given in Algorithm 30. We usea repulsion fator of 0.008 and a repulsion fator deay of 0.93 for 20 iterations. Thesevalues were hosen empirially based on a small number of trials with the submarineation region. In future work, we would desire these dispersion parameters to berapidly self-adapting to the size of the region and the number of sampled points.In pseudoode Algorithms 31{32, we present a variation on SADAT Iterative



CHAPTER 6. DADAT SEARCH 140Algorithm 30 Dispersed Disretizationdisperse-points(region, samples, weight , deay, iterations). Input: move parameter region,number of points to sample,weight of hange for �rst iteration,deay of hange for following iterations,number of iterations.Output: an array of dispersed points within the regionfor i  1 to samples dox[i℄  randomPoint(region)for i  1 to iterations dofor j  1 to samples dodx[j℄  0for k  1 to j dodi�erene x[k℄ � x[j℄distane qx[j℄2 + x[k℄2dx[j℄  dx[j℄ � di�erene=(distane3)dx[k℄  dx[j℄ + di�erene=(distane3)for j  1 to samples dodx[j℄  weight � dx[j℄x[j℄  x[j℄ + dx[j℄if (not inRegion(x[j℄ , region)) then. Reassign to losest point on region borderontainInRegion(x[j℄ , region)weight  weight � deayreturn xRe�nement with Strong Pruning, Node Ordering, and Upper Bound (x 5.5) wherewe lazily ompute dispersed disretization for move regions. That is, as a movedisretization is needed, we look to a list of disretizations indexed by region. Ifa disretization has not yet been omputed, we ompute it, otherwise we use thepreomputed global disretization for that move region.Using this dispersed disretization, we obtain exellent results for the 10-ShipDADAT Submarine Channel Problem as shown in Table 6.3. As before, we notethat good performane requires the time horizon parameter to be suÆiently high.Partiularly surprising is the fat that the results are better than those with the givenSADAT disretization.Looking over a number of dispersed disretizations, one quikly noties that more
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Algorithm 31 DADAT Iterative Re�nement with Strong Pruning, Node Ordering,Upper Bound, and Random DisretizationDADAT-IR-SPNOUB-Dispersed(rootNode, initialDelay, re�nementLimit ,upperBound , sampleVetor ,dispersionWeight, dispersionDeay,dispersionIterations). Input: root node,initial list of branhing times,limit on number of re�nement iterations,upper bound on solution ost,vetor of samples for eah possible ation parameter region,weight of hange for �rst dispersion iteration,deay of hange for following dispersion iterations,number of dispersion iterations.Output: goal node with ost beneath upper bound if found,best leaf node found otherwiseglobalUpperBound  upperBoundglobalGoalFound  falseglobalBestNode  nullre�nement  1while (not globalGoalFound and not re�nement > re�nementLimit) doDADAT-DFS-SPNOUB-Dispersed(rootNode, initialDelay=re�nement,re�nement, sampleVetor ,dispersionWeight,dispersionDeay,dispersionIterations)re�nement  re�nement + 1return globalBestNode



CHAPTER 6. DADAT SEARCH 142Algorithm 32 DADAT Depth-First Searh with Strong Pruning, Node Ordering,Upper Bound, and Dispersed DisretizationDADAT-DFS-SPNOUB-Dispersed(node, delay, depthLimit , sampleVetor ,dispWeight , dispDeay, dispIterations). Input: searh node, simulation delay, depth of searh below node,vetor of samples for eah possible ation parameter region,weight of hange for �rst dispersion iteration,deay of hange for following dispersion iterations,number of dispersion iterationsif (isGoal(node)) thenglobalGoalFound  trueglobalBestNode  nodereturnif (depthLimit = 0 or legalMoveRegions(node) = null) thenif (f(node) < f(globalBestNode)) thenglobalBestNode  nodereturnhildCount  0foreah move region r[i℄ of legalMoveRegions(node) doindex  r[i℄.indexif (dispersedMoves[index℄ = null) thendispersedPoints disperse-points(r[i℄ , sampleVetor[index℄, dispWeight ,dispDeay, dispIterations)for j  1 to sampleVetor[index℄ dodispersedMove[index℄[j℄  reateMove(index , dispersedPoint[j℄)for j  1 to sampleVetor[index℄ dohildCount  hildCount + 1hild[hildCount℄ wait(makeMove(lone(node), dispersedMove[index℄[j℄),delay)Sort hild[i℄ in inreasing order of f(hild[i℄)i  1done  falsewhile (not done and not globalGoalFound) do. Do not expand a node with f-value exeeding the global upper boundif (f(hild[i℄) > globalUpperBound) thendone  trueelseDADAT-DFS-SPNOUB-Dispersed(hild[i℄ , delay , depthLimit � 1)i  i + 1if (i > hildCount) thendone  truereturn



CHAPTER 6. DADAT SEARCH 143points are repelled to the edge than in the given SADAT disretization. Althoughnot a probable on�guration, any number of points plaed at even intervals aroundthe edge would be in equilibrium. With repulsion parameters given above, it wastypial to see 12 or more points along the edge of the irle with 5 or fewer pointsdispersed internally. As noted in the previous disussion, the extreme parametersrepresented by the edge of the irular ation region are more likely to appear inoptimal solutions. We hypothesize that having extra edge ation hoies aids in�nding better approximations to optimal solutions.Furthermore, in this problem domain, searhes of faster submarine trajetories (i.e.with disretizations having more maximal veloities) will have lesser searh depthsto solutions if suh speedy solution trajetories exist. Sine searh depth a�etssearh time omplexity exponentially, we likely bene�t from a disretization withmore maximal veloity values.Time Time to Goal Cost to GoalHorizon Results % Goal Min Avg Max Min Avg Max Nodes/Se4.20 100 0 N/A N/A N/A N/A N/A N/A 911.984.83 100 92 0.04 1.32 10.07 4.32 4.69 4.83 1,107.765.46 100 97 0.04 0.57 10.06 4.27 5.09 5.46 829.246.09 100 98 0.05 0.78 9.94 4.27 5.52 6.09 694.126.72 100 98 0.06 0.68 4.04 4.30 5.94 6.72 591.837.35 100 100 0.03 1.33 10.06 4.20 6.48 7.35 539.47Table 6.3: Results for DADAT Iterative Re�nement with Dispersed Ation Disretiza-tion6.6 DADAT Iterative Re�nement with Dispersed�-RBFSIn this setion, we apply dispersed disretization to SADAT Iterative Re�nementwith �-RBFS to reate another DADAT searh algorithm we all DADAT Iterative



CHAPTER 6. DADAT SEARCH 144Re�nement with Dispersed �-RBFS. The algorithm is given in pseudoode in Algo-rithms 33{34.Algorithm 33 DADAT Iterative Re�nement with � - Reursive Best-First Searhand Dispersed DisretizationDADAT-IR-eRBFS-dispersed(rootNode, bound , initialDelay, espilon,re�nementLimit , sampleVetor ,dispWeight , dispDeay, dispIterations). Input: root node,upper bound on solution ost,initial simulation delay,epsilon minimum bound inrement,limit on number of re�nement iterations,vetor of samples for eah possible ation parameter region,weight of hange for �rst dispersion iteration,deay of hange for following dispersion iterations,number of dispersion iterations.Output: goal node if solution found, null if notgoalNode  nullre�nement  1while (goalNode = null and not re�nement > re�nementLimit) doDADAT-eRBFS-dispersed(rootNode, f(rootNode), bound , initialDelay=re�nement ,espilon, sampleVetor , dispWeight , dispDeay,dispIterations)re�nement  re�nement + 1return goalNodeThe quality of the results for the 10-Ship DADAT Submarine Channel Problemare good, but not so good as DADAT Iterative Re�nement with Dispersed AtionDisretization, Strong Pruning, Node Ordering, and Upper Bound. However, thisalgorithm ommends itself for use where f 0 is not monotoni, or where a good timehorizon is not known. Consider the broad range of initial delay parameters over whihwe have good results in Table 6.4. The parameters for dispersed disretization wereas follows: dispWeight = 0.008, dispDeay = 0.93, dispIterations = 20,To again see how the dispersed disretization is an improvement over the randomlyrotated given disretization of the SADAT version of the problem, onsider the resultsof Table 6.5. For the same problems, the dispersed disretization inreases the numberof solutions found by about 33%.
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Initial Time to Goal Cost to GoalDelay Results % Goal Min Avg Max Min Avg Max Nodes/Se1.00 100 76 0.01 1.89 9.50 4.32 7.71 9.53 491.392.00 100 71 0.02 1.61 9.37 5.02 7.77 9.65 490.553.00 100 74 0.03 1.89 8.10 4.31 7.71 9.63 502.994.00 100 69 0.04 1.89 8.91 5.70 7.94 9.77 491.304.20 100 72 0.01 1.82 8.77 4.46 8.16 10.00 454.784.83 100 77 0.03 3.10 9.56 4.70 8.07 9.84 471.745.46 100 70 0.03 2.80 9.92 4.29 8.15 9.98 461.756.09 100 69 0.05 2.45 9.86 4.31 7.98 9.98 465.636.72 100 73 0.02 3.01 10.04 4.20 8.07 9.98 448.347.35 100 68 0.04 2.93 9.21 4.89 8.46 9.94 453.53Table 6.4: Results for DADAT Iterative Re�nement with Dispersed �-RBFS
Initial Time to Goal Cost to GoalDelay Results % Goal Min Avg Max Min Avg Max Nodes/Se4.20 100 47 0.06 2.76 8.78 5.95 8.18 9.80 477.434.83 100 34 0.04 3.67 9.51 6.17 8.20 9.96 460.035.46 100 39 0.17 2.69 7.57 5.58 8.26 10.00 464.326.09 100 38 0.22 5.31 10.02 5.53 8.11 9.99 456.966.72 100 33 0.03 2.97 9.53 6.00 8.25 9.82 452.577.35 100 40 0.17 4.94 9.99 5.95 8.16 9.95 448.07Table 6.5: Results for SADAT Iterative Re�nement with �-RBFS and RandomlyRotated Ation Disretization



CHAPTER 6. DADAT SEARCH 146Algorithm 34 DADAT � - Reursive Best-First Searh with Dispersed DisretizationDADAT-eRBFS-dispersed(node, nodeF , bound , delay , espilon, sampleVetor ,dispWeight , dispDeay, dispIterations). Input: node, alling stored searh value of node, loal ost upper bound,simulation delay, epsilon minimum bound inrement,vetor of samples for eah possible ation parameter region,weight of hange for �rst dispersion iteration,deay of hange for following dispersion iterations,number of dispersion iterations.Output: return stored searh value of nodeif (f(node) > bound) thenreturn f(node)if (isGoal(node)) thengoalNode  nodeexit algorithmif (numOfChildren(node) = 0) thenreturn 1foreah move region r[i℄ of legalMoveRegions(node) doindex  r[i℄.indexif (dispersedMoves[index℄ = null) thendispersedPoints  disperse-points(r[i℄ , sampleVetor[index℄, dispWeight ,dispDeay, dispIterations)for j  1 to sampleVetor[index℄ dodispersedMove[index℄[j℄  reateMove(index , dispersedPoint[j℄)for j  1 to sampleVetor[index℄ dohildCount  hildCount + 1  wait(makeMove(lone(node), dispersedMove[index℄[j℄), delay)if (f(node) < nodeF ) thenF  max(nodeF , f())elseF  f()insert(heap, , F )f, Fg  extratMin(heap)while (F � bound and F <1) do. The new loal upper bound must inrease by at least epsilon.if (hildCount > 1) thenF  max(DADAT-eRBFS-dispersed(, F , min(bound , minValue(heap))),F + epsilon)elseF  max(DADAT-eRBFS-dispersed(, F , bound), F + epsilon)insert(heap, , F )f, Fg  extratMin(heap)return F



CHAPTER 6. DADAT SEARCH 147Dispersed disretization parameters were tuned aross several runs. While thehosen dispersed disretization parameters were reasonably well hosen for the sub-marine ation parameter region, they would obviously not be generally suited for allregions one might enounter. In future work, it would be good to have suh parame-ters be adaptively tuned muh as step size is tuned in loal optimization. If one ouldreliably get onvergene to a good dispersion, then dispersion parameters ould beremoved from these algorithms and their use would be simpli�ed.6.7 ConlusionsIn this hapter, we gave formal de�nitions of DADAT Hybrid System Games and DA-DAT Hybrid System Searh Problems. We de�ned the DADAT Submarine ChannelProblem as the SADAT Submarine Channel problem without a given ation dis-retization. The submarine instead is allowed any heading and any speed up to itsmaximum speed.We then investigated means of augmenting SADAT searh tehniques of the previ-ous hapter suh that ation disretizations are performed dynamially. We observedthat the perentage of solutions found for random disretization is omparable tothose ahieved with SADAT ation disretization when headings are uniformly ro-tated by a random angle. However, ost to goal of suh solutions is inreased. This isdue to the fat that optimal submarine path solutions often involve extreme values,espeially full speed. The random disretization will, on average, have onsiderablyfewer ations near full speed than the SADAT disretization.We next observed the unsuessful appliation of information-based optimizationto ation disretization. While making good deisions in priniple, the overheadof performing a multidimensional information-based optimization at eah node is tooburdensome for this real-time task. Thus the omputational bene�t of more intelligentnode expansion is outweighed by the omputational ost of omputing suh hoies.Between random disretization and information-based optimization based on soundmathematial priniples, we wished to �nd a ompromise: a disretization whihwould reet informed hoies while being very simple to ompute. We observed that



CHAPTER 6. DADAT SEARCH 148an extreme ase of information-based optimization, where the funtion is �nite-valuedand the target is in�nite, yields a disretization where eah point is as far away as pos-sible from preeding points. In fat, one suh information-based optimization yieldsa disretization remarkably similar to the SADAT disretization we were given.Based on the extreme ase of information-based optimization, and imitating thenatural phenomenon of eletrostati repulsion of \point" harges, we developed adispersion algorithm whih yielded disretizations with onsiderably better goal �nd-ing performane than was ahieved with the given SADAT ation disretization withheadings uniformly rotated by a random angle.It should be noted that a good representation of the problem is neessary tothe suess of searh appliations. Two spei� harateristis are of speial note.First, one should keep the representation as simple as possible. Complex behaviorsneed not have omplex underlying deisions, and keeping the dimensionality of ationparameter regions low is important given the limited sampling one an perform.Seond, one should represent the ation parameter regions in suh a way as touniformly distribute parameters aording to likelihood of utility of suh ations.For example, one ould represent possible submarine ations as a retangle withsides bounding possible headings and speeds. Compared to uniform sampling ofthe irular representation, uniform sampling of the retangular representation givesgreater importane to moves with slower speeds. Of ourse, this issue ould also beavoided at the ation parameter representation level if we speialize our disretizationmethods to vary importane of sampling over ation parameter regions.The main point is that at some level, one enodes a notion of sampling importaneover possible ation parameters. Choosing low dimensional ation parameter regionrepresentations whih uniformly distribute the likely importane of parameters isimportant in representing a problem for suessful use with these tehniques.In summary, if a good time horizon is known and the heuristi evaluation fun-tion f 0 is known to be monotoni, then among our algorithms, DADAT IterativeRe�nement with Strong Pruning, Node Ordering, Upper Bound, and Dispersed Dis-retization is preferred. Otherwise, if one an provide a deent heuristi evaluation



CHAPTER 6. DADAT SEARCH 149funtion, then DADAT Iterative Re�nement with �-RBFS and Dispersed Disretiza-tion is preferred.Thus, we have introdued a olletion of algorithms whih perform dynami dis-retization of ation and ation timing in searh. There is muh yet to be done in thisarea, yet we hope that these �rst steps will bring Arti�ial Intelligene and Controlresearhers loser to fruitful ommon work.
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