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Prefa
eThis dissertation explores new algorithmi
 approa
hes to simulation-based optimiza-tion, game-tree sear
h, and tree sear
h for the 
ontrol and analysis of hybrid systems.Hybrid Systems are systems that evolve with both dis
rete and 
ontinuous behaviors.Examples of hybrid systems in
lude diverse mode-swit
hing systems su
h as thosewe have used as fo
us problems: stepper motors, magneti
 levitation units, and sub-marine dete
tion avoidan
e s
enarios. For hybrid systems with 
omplex dynami
s,the designer may have little other than simulation as a tool to dete
t design 
awsor inform o�ine or real-time 
ontrol. In approa
hing 
ontrol and analysis of su
hsystems, we thus limit ourselves to a bla
k-box simulation of the system, assumingas little as possible about the underlying dynami
s and extending various types ofsear
h algorithms to treat these diÆ
ult general 
ases.Chapter 1 provides the reader with a more detailed overview, a summary of 
on-tributions, ba
kground reading, and 
hapter dependen
ies.Chapter 2 presents a stepper motor 
ontrol design problem where the designerwishes to use simulation to eÆ
iently dete
t rare stall s
enarios in the spa
e of pos-sible system parameters and initial states if su
h s
enarios exist. A survey of globaloptimization te
hniques and extensions of su
h te
hniques are made, and we dis
overthe importan
e of novel information-based and multi-level optimization methods.Chapters 3{6 fo
us on game-tree sear
h and tree sear
h problems where a series ofa
tions must be 
hosen under di�erent assumptions about the existen
e of a given a
-tion or a
tion timing dis
retization. If the sear
h algorithm is given an a
tion or a
tiontiming dis
retization, we say that the sear
h algorithm has \stati
 a
tion dis
retiza-tion" or \stati
 a
tion timing dis
retization" respe
tively. If the sear
h algorithm isiv



not given an a
tion or a
tion timing dis
retization, we say the sear
h algorithm has\dynami
 a
tion dis
retization" or \dynami
 a
tion timing dis
retization" respe
-tively. Thus various assumptions about whether or not either dis
retization is givende�ne four quadrants: A
tion TimingDis
retizationStati
 Dynami
A
tion Stati
 SASAT SADATDis
retization Dynami
 DASAT DADATThe a
ronyms in ea
h quadrant are used in this dissertation to keep tra
k of theseunderlying assumptions about a
tion and a
tion timing dis
retization.Chapter 3, SASAT game-tree sear
h, presents a magneti
 levitation 
ontrol prob-lem as an adversarial game for the purpose of robust 
ontrol synthesis. We explorethe use of a game-graph (augmented 
ell-map) approximation and alpha-beta pruningte
hnique for fast adaptive online 
ontrol.Chapter 4, DASAT game-tree sear
h, 
ontinues with the magneti
 levitation 
on-trol problem and instead fo
uses on the issue of a
tion dis
retization for game-treesear
h. A novel appli
ation of information-based optimization to alpha-beta sear
his presented.Chapter 5, SADAT tree sear
h, presents a submarine dete
tion avoidan
e prob-lem as a solitaire game or sear
h for the purpose of fast, real-time ta
ti
al planningassistan
e. Assuming dis
retized a
tions, we fo
us on the problem of a
tion timingdis
retization. New iterative re�nement te
hniques and a variant of best-�rst sear
hare presented.Chapter 6, DADAT tree sear
h, 
ontinues with the submarine dete
tion avoidan
eproblem and removes the assumption of dis
retized a
tions. Augmenting the algo-rithms of the previous 
hapter, we explore random, information-based, and disperseddynami
 dis
retization of a
tions in sear
h.
v
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Chapter 1Introdu
tion
1.1 MotivationThis dissertation explores new algorithmi
 approa
hes to simulation-based optimiza-tion, game-tree sear
h, and tree sear
h for the 
ontrol and analysis of hybrid systems.Hybrid Systems are systems that evolve with both dis
rete and 
ontinuous behaviors.Examples of hybrid systems in
lude diverse mode-swit
hing systems su
h as thosewe have used as fo
us problems: stepper motors, magneti
 levitation units, and sub-marine dete
tion avoidan
e s
enarios. For hybrid systems with 
omplex dynami
s,the designer may have little other than simulation as a tool to dete
t design 
awsor inform o�ine or real-time 
ontrol. In approa
hing 
ontrol and analysis of su
hsystems, we thus limit ourselves to a bla
k-box simulation of the system, assumingas little as possible about the underlying dynami
s and extending various types ofsear
h algorithms to treat these diÆ
ult general 
ases.In fa
t, the system dynami
s need not in
lude both 
ontinuous and dis
rete
hanges. For optimization, we are interested in systems that tend to have similarbehavior for similar initial 
onditions. For game-tree sear
h and sear
h, we are in-terested in systems for whi
h simulation and 
ontrol a
tions 
an be used to explorebran
hing possibilities of system evolution in order to inform intelligent 
ontrol a
tion.For ea
h problem area, a representative problem was 
hosen to fo
us our work.For global optimization, Chapter 2 presents a stepper motor 
ontrol design problem1



CHAPTER 1. INTRODUCTION 2where the designer wishes to use simulation to eÆ
iently dete
t rare stall s
enarios inthe spa
e of possible system parameters and initial states if su
h s
enarios exist. Thestepper motor system is hybrid in the sense that the system evolves with pie
ewise
ontinuous intervals separated by s
heduled 
oil voltage 
hanges modeled as dis
reteevents.For game-tree sear
h, Chapter 3 presents a magneti
 levitation 
ontrol problemas an adversarial game for the purpose of robust 
ontrol synthesis. The magneti
levitation system is hybrid in the sense that the system evolves with pie
ewise 
on-tinuous intervals separated by 
ontrolled input 
hanges modeled as dis
rete events.Both the stepper motor and magneti
 levitation systems are essentially 
ontinuoussystems with fast 
ontrolled 
hanges approximated as o

urring instantaneously.For tree sear
h, Chapter 5 presents a submarine dete
tion avoidan
e problem as asolitaire game or sear
h for the purpose of fast, real-time ta
ti
al planning assistan
e.This problem is hybrid in the sense that the system evolves with pie
ewise 
ontinuousintervals separated by 
ontrolled and autonomous dis
rete events1. For a thoroughreview and uni�
ation of hybrid system models, see Brani
ky's dissertation[5℄.In ea
h 
ase, we have sought to avoid use of 
omplex problem-domain-spe
i�
knowledge. One 
an often trade o� generality for performan
e through the use ofdomain-spe
i�
 knowledge. As we formalize new problems and take �rst steps toaddress them in this dissertation, we take 
are to minimize the assumed knowledgeof our problem domains so that the algorithms developed may serve as generallyappli
able kernels from whi
h future advan
es 
an grow.Ea
h of the following 
hapters begins with a formal de�nition of the problem ofinterest. We now pla
e these problems in perspe
tive with one another.1.2 Problem Chara
terizationsIn Russell & Norvig's \Arti�
ial Intelligen
e: a modern approa
h"[41℄, an agent-basedapproa
h to problem de�nition is used, where an agent maps per
epts to a
tions1For this problem, 
ontrolled and autonomous dis
rete events are 
hanges in submarine and shipheadings, speeds, and modes.



CHAPTER 1. INTRODUCTION 3within a dynami
al system. A PAGE des
ription of an agent in
ludes four basi

omponents:� Per
epts - what the agent is able to sense about its environment,� A
tions - what the agent is able to a�e
t in its environment,� Goals - what the agent wishes to a
hieve in its environment, and� Environment - a des
ription of the environment itself.From an optimal 
ontrol viewpoint, this would be like taking a 
ontroller-
entri
approa
h to problem de�nition with ea
h of these 
omponents respe
tively 
orre-sponding to 
ontroller inputs, 
ontrollers outputs, performan
e index2, and plant.Additionally, environment des
riptions make the following distin
tions:� A

essible vs. Ina

essible - If the agent senses the entire state of the envi-ronment relevant to a
hieving its goal, the environment is a

essible. Otherwiseit is ina

essible. For example, 
hess as a game of perfe
t information is a

es-sible, whereas poker as a game of imperfe
t information is ina

essible.� Deterministi
 vs. Nondeterministi
 - If the next state of the environmentis 
ompletely determined by the 
urrent state and the a
tions of the agents, theenvironment is deterministi
. Otherwise, it is nondeterministi
. For example,
hess as a game without 
han
e is deterministi
, whereas poker as a game of
han
e is nondeterministi
. Su
h (non)determinism is usually de�ned with re-spe
t to the agent's perspe
tive. From the perspe
tive of poker playing agents,
ards drawn are not determined by the agents themselves and are a sour
e ofnondeterminism in game play.� Episodi
 vs. Nonepisodi
 - If the agent's experien
e in the environment 
anbe divided into separate \episodes" (i.e. a single mapping from per
epts to2\Performan
e index" may also be 
alled \obje
tive fun
tion" or \utility fun
tion" in other
ontrol 
ontexts.
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tions) whi
h have no in
uen
e on the utility of a
tions in all other episodes,the environment is episodi
. Otherwise, it is nonepisodi
. The single-shot 
han
egame of ro
k-s
issors-paper is episodi
, whereas the 
omplex sequential natureof 
hess is nonepisodi
.� Stati
 vs. Dynami
 - If the environment 
annot 
hange while the agent isdeliberating, the environment is stati
. Otherwise, the environment is dynami
.Chess is stati
3, whereas baseball is dynami
.� Dis
rete vs. Continuous - If there are a limited number of distin
t per
eptsand a
tions, then the environment is dis
rete. Otherwise, it is 
ontinuous. Withenumerable board positions, 
hess is dis
rete, whereas baseball is 
ontinuous.We now 
hara
terize ea
h of our problems in turn and dis
uss further parti
ularsof ea
h.1.2.1 Simulation-based Global Optimization for Initial SafetyRefutation of Hybrid SystemsFor this problem, we are interested in dete
ting design 
aws within an initial timeperiod of simulation. Given a set of possible initial 
onditions (possible system pa-rameters and initial states), we wish to know if a prede�ned 
ontroller remains withina desired set of \safe" states for an initial time period. We 
all this property \initialsafety". Sin
e the system is entirely prede�ned with no degrees of freedom for de
i-sion making, the 
ontroller is in this 
ase a degenerate 
ase of an agent, with neitherper
epts nor a
tions whi
h 
an be used to deliberate about or a�e
t a
hievement ofthe goal within the environment.However, the task of refuting initial safety presents a more interesting study. APAGE des
ription of the initial safety refutation agent is as follows:� Per
epts - The agent per
eives the 
urrent possible initial 
ondition under 
on-sideration, and the evaluated heuristi
 measure of relative safety of a traje
tory3Or else the opponent's hand gets slapped for playing out of turn.



CHAPTER 1. INTRODUCTION 5simulated from that initial 
ondition.� A
tions - The agent 
hooses the next possible initial 
ondition to 
onsider andevaluates the heuristi
 measure of relative safety of the traje
tory simulatedfrom this initial 
ondition.� Goals - The agent wishes to, with minimal a
tions, �nd an initial 
ondition forwhi
h simulation yields a traje
tory with an unsafe state, thus refuting initialsafety of the system.� Environment - An o�ine simulation testing environment whi
h is:{ A

essible - The agent may obtain a heuristi
 evaluation of the relativesafety of any possible initial 
ondition.{ Deterministi
 - Simulation and evaluation of the simulation is determin-isti
 with respe
t to initial 
onditions.{ Nonepisodi
 - Sin
e the agent seeks to minimize the number of a
tionsneeded for refutation (if a refutation exists), ea
h a
tion a�e
ts the per-forman
e overall.{ Stati
 - The testing environment never 
hanges.{ Continuous - Per
eived evaluations 
an in
lude all non-negative real num-bers. The range of possible a
tions is over a 
ontinuous spa
e of possiblesystem parameters and initial states.One might wonder why we have the agent seek to minimize the number of a
tionsrather than time. The reason is that we make the assumption that the 
omputa-tional 
ost of simulation and evaluation dominates the 
ost of the agent deliberation.In doing so, we approximate the goal of minimizing overall 
omputational time byminimizing the number of 
alls to the most 
omputationally expensive pro
edure.We did not work with initial 
ondition spa
es with more than 6 dimensions. Su
hproblems are often addressed by performing su

essive sear
hes in lower-dimensionalsubspa
es.



CHAPTER 1. INTRODUCTION 61.2.2 Simulation-based Game-Tree Sear
h for Robust Con-trol Synthesis of Hybrid SystemsControl theorists have long posed 
ontrol problems as games in order to treat multi-agent 
ontrol problems (e.g. pursuit-evasion games) or robust 
ontrol problems (e.g.where the adversary represents worst 
ase external perturbation, error, et
.)[1, 7℄. We
hara
terize these problems from the perspe
tive of the �rst-player 
ontrol agent asfollows:� Per
epts - The agent per
eives the 
urrent state of the hybrid system.� A
tions - In Chapter 3, the agent 
hooses from a dis
rete set of possible a
tions.In Chapter 4, the agent 
hooses from a set of possible 
losed, 
ontinuous a
tionparameter regions.� Goals - The agent wishes to maximize its s
ore (utility) with respe
t to a giventime horizon.� Environment - A multi-agent hybrid dynami
al system whi
h is:{ A

essible - The agent 
an per
eive all hybrid state variables relevant toa
hieving its goal.{ Deterministi
 - The a
tions of the players 
ompletely determine the dy-nami
s of the system.{ Nonepisodi
 - Ea
h a
tion 
an a�e
t the system dynami
s thus a�e
tingthe s
ore/utility of future a
tions.{ Dynami
 - While a player is deliberating, another player 
an a
t and
hange the environment.4{ Continuous - Both per
epts (all state variables) and a
tions (
hosen froma
tion parameter regions) 
an be 
ontinuous.4In Chapters 3 and 4, we simplify the problem by approximating the dynami
 game as onein whi
h the players take turns at �xed times. We approa
h the dynami
 problem with a stati
approximation of the problem.
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hara
terized the general features of the problem, it is importantto 
hara
terize problems for whi
h game-tree sear
h is a suitable approa
h. Beyondthe 
ommonalities we have dis
ussed, good game-tree sear
h appli
ations also shareinformational/topologi
al 
hara
teristi
s. In sear
hing possible lines of play fromthe 
urrent state, the game-tree formed must 
ontain suÆ
ient information within alimited depth, given a low bran
hing fa
tor, to indi
ate intelligent a
tion under playermodeling assumptions:1. Information - Like any pro
ess whi
h works with information to form 
on
lu-sions, one 
an expe
t the adage \garbage in, garbage out" to hold. Whetherin the form of a utility fun
tion or a heuristi
 fun
tion estimating utility, onemust have a means of evaluating the desirability of one sequen
e of moves overanother. While su
h a fun
tion need not be perfe
t, poor information will leadto poor de
isions. At the other extreme, a perfe
t utility fun
tion obviates theneed for sear
h. If the expe
ted utility of performing a single move is perfe
tly
omputable, one need only look ahead one move. Game-tree sear
h is bettersuited for games whi
h bene�t from a 
ombination of lookahead and imperfe
tevaluation. Typi
ally the expe
ted utility of a move sequen
e is 
omposed ofone or both of the following: (a) the utility of performing the sequen
e of a
tionsin the 
urrent state, and (b) an estimate of the utility of a
tions whi
h will be
hosen thereafter. A sear
h te
hnique whi
h makes use of (a) only is said toexhibit \greedy" behavior.2. Sear
h Depth - Game-tree sear
h 
an be thought of as an optimization in thespa
e of move sequen
es under player modeling assumptions (see (4)). Giventhat su
h spa
es 
an be vast for small, simple games, methods often assume thatsear
h will 
over a small subset of move sequen
es, generally biased towards theshortest sequen
es. Often, su
h subsets of a
tion sequen
es will have no path,or no optimal path whi
h leads to a goal state (vi
tory). The time required toperform sear
h grows exponentially as O(bd), where b is the e�e
tive bran
hingfa
tor of the tree, and d is the sear
h depth. Obviously, even for small bran
hingfa
tors, game-tree sear
hes will only be su

essful in domains where limited
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ient to inform intelligent a
tion.3. Sear
h Breadth - For the same reason, high bran
hing fa
tors 
an also rendersear
h ine�e
tive. With players alternately pla
ing pie
es on a 19 � 19 grid,the game of Go provides a good example of how a high bran
hing fa
tor 
anmake lookahead too 
omputationally expensive for e�e
tive use. Game-treesear
h is best applied to games where bran
hing fa
tor is not so high as toprevent suÆ
ient lookahead to inform intelligent a
tion. For a 
ontinuous orhybrid game with in�nite possible moves de�ned by 
ontinuous a
tion parameterspa
es, we 
an only sample a �nite number of moves. Feasibility of sear
h forapproa
hing su
h problems depends on how well sampling 
an provide globalinformation about the quality of de
isions.4. Player Modeling Assumptions - Rational game-play is based on player mod-eling assumptions. Although most game-theoreti
 resear
h is fo
used on opti-mal rational play, understanding of one's opponent allows better game play. Forinstan
e, one 
an play 
hess well assuming that one's opponent approximatesperfe
t rational play. However, if one knows that the opponent strongly favorsmaterial advantage, then one will do better to favor the strategy of sa
ri�
e.Game-tree sear
h te
hniques usually have very simple player models whi
h are
omputationally eÆ
ient. The minimax assumption is an example.So information 
hara
teristi
s 
on
erning (expe
ted) utility of moves and playermodeling is intertwined with topologi
al 
hara
teristi
 of sear
h-tree depth and breadth.Put simply, there must be suÆ
ient information in the possibilities we 
an 
onsiderduring sear
h to make intelligent 
hoi
es. Beyond environmental 
hara
teristi
s, theseform the 
ore 
onsiderations for game-tree sear
h appli
ations.One �nal important note is the distin
tion between the e�e
t of the dimensional-ity of the state spa
e versus the e�e
t of the dimensionality of the a
tion parameterregions. As the dimensionality of the state spa
e in
reases, the 
omputational 
om-plexity of simulation is a�e
ted. As the dimensionality of a
tion parameter regions
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reases, the e�e
tive bran
hing fa
tor of sear
h in
reases exponentially to main-tain the same granularity of dis
retization5. So long as the system 
an be simulatedqui
kly, dimensionality of the state spa
e is not a 
on
ern for the 
omplexity of thesear
h. Biologists have observed that 
omplex behaviors in organisms with manydegrees of freedom in movement arise from superposition of very simple signals ofvarying intensity[2℄. If one 
an 
hoose an appropriate low-dimensional parameter-ization of a
tion, sear
h has the potential to inform intelligent a
tion of 
omplexsystems.1.2.3 Simulation-Based Tree Sear
h for Real-Time ControlAssistan
e of Hybrid SystemsTree sear
h (or simply \sear
h") 
an be viewed as a spe
ial solitaire 
ase of game-treesear
h where there is only one player. The general 
hallenge is to �nd a sequen
e ofa
tions whi
h either maximizes a s
ore/utility/payo�, minimizes a 
ost, or a
hievesa desired state or set of states. We 
hara
terize these problems from the perspe
tiveof the �rst-player 
ontrol agent as follows:� Per
epts - The agent per
eives the 
urrent state of the hybrid system.� A
tions - In Chapter 5, the agent 
hooses from a dis
rete set of possible a
tions.In Chapter 6, the agent 
hooses from a set of possible 
losed, 
ontinuous a
tionparameter regions.� Goals - We treat multiple di�erent goals in this 
ontext whi
h take on some
ombination of (1) minimizing 
ost with respe
t to a given time horizon, and(2) a
hieving a desired goal state or set of states. Methods are presented whi
hpursue (1) only, pursue (1) and stop if (2) is a
hieved, and pursue (2) makingsure the 
ost is approximately optimal.� Environment - A multi-agent hybrid dynami
al system whi
h is:5Granularity is de�ned with respe
t to Eu
lidean distan
e of sampled a
tion parameter points.
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essible - The agent 
an per
eive all hybrid state variables relevant toa
hieving its goal.{ Deterministi
 - The a
tions of the agent 
ompletely determine the dy-nami
s of the system.{ Nonepisodi
 - Ea
h a
tion 
an a�e
t the system dynami
s thus a�e
tingthe s
ore/utility of future a
tions.{ Stati
 - The agent is the sole a�e
tor of the environment.{ Continuous - Both per
epts (all state variables) and a
tions (
hosen froma
tion parameter regions) 
an be 
ontinuous.In Chapters 5 and 6, we no longer assume a given a
tion timing dis
retization. InChapter 5, we assume a given a
tion dis
retization. In Chapter 6, we do not.As a degenerate 
ase of game-tree sear
h, all pre
eding dis
ussion of appli
abilitybeyond environmental 
on
erns is relevant ex
ept for dis
ussion 
on
erning playermodeling assumptions. To reiterate, in sear
hing possible sequen
es of a
tions fromthe 
urrent state, the tree sear
hed must 
ontain suÆ
ient information within alimited depth, given a low bran
hing fa
tor, to indi
ate intelligent a
tion.1.3 ContributionsIn this se
tion, we summarize the algorithmi
 
ontributions of this resear
h. Beyondalgorithmi
 
ontributions, Chapter 2 presents the de�nition of an initial safety prob-lem and a novel reformulation of the problem to a spe
ialization of global optimization.Chapters 3{6 ea
h formally de�ne hybrid system games and sear
h problems underdi�ering assumptions of a
tion and a
tion timing dis
retizations.In Chapter 2, we present the �rst multidimensional approa
h to information-basedoptimization and the �rst lo
al optimization appli
ation of the information-basedoptimization approa
h. We generalized the multi-level lo
al optimization ar
hite
tureof [10℄, and 
reated two information-based multi-level optimization methods whi
hwere the only algorithms we found able to reliably �nd design faults with our diÆ
ult



CHAPTER 1. INTRODUCTION 11stepper motor test problem. In addition, we 
reated multi-level single-linkage[39℄variants whi
h assumed lo
al optimization determinism, used ordering heuristi
s, andperformed lazy obje
tive fun
tion evaluation. Finally, we made 
onstrained, epsilon-des
ent variants of quasi-Newton and Yuret's lo
al optimization[54℄.In Chapters 3{6, we develop game-tree sear
h and sear
h te
hniques for 
ontrol ofhybrid systems. In 
ontrast to 
lassi
al 
ontrol te
hniques su
h as feedba
k lineariza-tion, we do not 
onstrain our system to a spe
i�
 analyti
al form. For most of ouralgorithms, we assume that a system simulator is given. However, the augmented 
ell-map te
hniques of Chapter 3 require only suÆ
ient time-series data to approximatesystem dynami
s. Furthermore, simulation 
an be approximated through the interpo-lation of time-series data (e.g. linear weighted regression from observed behavior[32℄).From this perspe
tive, our te
hniques not only enable model-based 
ontrol, but also
an be applied without expli
it models given an appropriate means of interpolatingunseen system behavior.In Chapter 3, we present a new synthesis of 
ell-map and minimax methods for fastapproximate 
ontrol synthesis. We augmented a 
ell-map for multi-player evaluation,
alling it a game-graph. We present two algorithms whi
h are respe
tively suited foro�ine and online derivation of optimal 
ontrol: Dynami
 Programming on a Game-Graph and Alpha-Beta Pruning on a Game-Graph.In Chapter 4, we show that alpha-beta sear
h naturally provides bounds for the ap-pli
ation of information-based optimization to the dis
retization of 
ontinuous a
tionparameter spa
es. We 
all the resulting algorithm Information-Based Alpha-BetaSear
h, and show empiri
ally that it ex
eeds the good speed and pruning perfor-man
e of random dis
retization while mat
hing the 
ontrol poli
y quality of uniformdis
retization.In Chapter 5, we provide several new sear
h approa
hes that do not rely on a given�xed a
tion timing dis
retization. Simple Iterative Re�nement su

essively sear
hesfor a solution from the initial time to a �xed time horizon with in
reasingly �nergranularity until a solution is found. SADAT Best-First Sear
h, the �rst systemati
sear
h that dynami
ally generates new internal nodes, was shown to exhibit a tradeo�



CHAPTER 1. INTRODUCTION 12of speed versus solution quality. Iterative Re�nement with Strong Pruning, Node Or-dering, and Upper Bound yielded impressive performan
e given an appropriate timehorizon and a monotoni
 heuristi
 evaluation fun
tion. We next 
reated an epsilonvariant of Korf's Re
ursive Best-First Sear
h[25℄ and showed its extreme sensitivityto the input delay parameters. We 
on
lude the 
hapter with a su

essful synthesisof � - Re
ursive Best-First Sear
h with iterative re�nement ideas. Iterative Re�ne-ment with � - Re
ursive Best First Sear
h gave ex
ellent results while behaving most
onsistently with respe
t to a wide range of initial delay parameters.In Chapter 6, we des
ribe the augmentation of the best new sear
hes from the pre-vious 
hapter with three forms of dynami
 dis
retization: random, information-based,and dispersed. The previous 
hapter relied on a human-designed dis
retization whi
hwas aligned with topologi
al features and obje
t motion of the test problem domain.We repeated experiments from Chapter 5 with the given heading dis
retizations ran-domly rotated. Dynami
 random dis
retization performed similarly to the randomlyrotated stati
 dis
retization. The 
omputational 
omplexity of information-based op-timization made it unsuitable for the real-time requirements of the test problem. Wedeveloped a 
ompromise between the speed of random dis
retization and the prin
i-pled approa
h of information-based dis
retization. The 
ompromise, 
alled disperseddis
retization, yielded performan
e far ex
eeding that of the randomly rotated stati
dis
retization.1.4 VisionWhile one might argue that 
ontrol and AI resear
hers interse
t in the study ofneural networks, it appears that there is no signi�
ant interse
tion between AI and
ontrol game resear
h. Constru
ting a program to make a 
omputer play 
hess wellprimarily a�e
ts a philosophi
al 
hange in the world, ne
essitating new 
on
lusionsabout the nature of intelligen
e. However, 
onstru
ting programs that think and a
tintelligently in 
ontinuous physi
al domains a�e
ts a material 
hange in the world,
reating new opportunities for pra
ti
al appli
ation of 
omputers.We believe that the extension of dis
rete AI sear
h te
hniques to hybrid 
ontrol
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an be of great bene�t to both AI and 
ontrol. By in
reasing the 
ommonground of 
ommon goals, we hope to fa
ilitate the promising merge of AI dis
retesystem expertise and 
ontrol 
ontinuous system expertise. Appli
ations we envisionare des
ribed below.� Design fault dete
tion: While a dis
rete sear
h of a hybrid spa
e is not 
omplete,it 
an be an eÆ
ient means of dete
ting faulty behaviors without needing toover-abstra
t or over-approximate the model. We imagine a 
ontrol engineertaking sour
es of error or un
ertainty and modeling them as a player or playersthat seek to work against the 
ontroller. The game-tree sear
h would then bean eÆ
ient means of sear
hing for the most signi�
ant possible deviations fromintended behavior.� Robust 
ontrol: In treating possible disturban
es or errors as possible a
tionsof an adversarial player in a 
ontrol game, the obje
tive of optimal game playis equivalent to the obje
tive of robust 
ontrol. We will see two di�erent sear
happroa
hes to robust 
ontrol in Chapters 3 and 4. In one approa
h, we ap-promixate the 
ontinuous system as a graph and apply various forms of dynami
programming to 
ompute optimal robust 
ontrol for the approximated system.In the other approa
h, we perform a tree sear
h of a sample of possible systemtraje
tories. Sin
e the dis
rete game-tree sear
h of the 
ontinuous system isin
omplete, it 
an only be 
onsidered an approximation of robust 
ontrol to theextent that we 
an prove properties about the most that our sampling will missin the 
ourse of sear
h.� Online 
ontrol: For appli
ations where safety is not 
riti
al, the online use ofgame-tree sear
h or tree-sear
h for 
ontrol de
isions may provide an immediate,approximate model-in-
ontroller-out methodology for 
ontrol. Using simulationto proje
t the system state �t time units into the future, we sear
h from theproje
ted point for �t time units and use the results of sear
h to inform 
ontrola
tion. Su
h 
ontrollers would be espe
ially useful in appli
ations requiring ex-
eption versatility in adaptive 
ontrol. Even if one 
annot parameterize 
hanges
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hange the simulation and/or 
ost model inorder to adapt 
ontroller behavior to a new environment and/or goal.� Rapid prototyping: In the design stage, we also believe that tree sear
h (a soli-taire game without adversaries) 
an be used to provide a rough initial 
ontrolpoli
y whi
h 
an provide valuable information to the designer. If the designrequirements are espe
ially demanding, a fast approximate solution 
an be ofbene�t as an indi
ation of what proven 
ontrol te
hniques would be best ap-plied. For instan
e, a designer might be able to use a straightforward simulationof a 
omplex system (without need for diÆ
ult abstra
tion) to derive an ap-proximately optimal 
ontrol poli
y. From analysis of the approximate 
ontrolpoli
y, the designer might gain qui
k insight into the dynami
s of the system,su
h as state spa
e regions that exhibit signi�
ant nonlinearities.Simulation is already a valuable tool in 
ontroller design validation. By providingintelligent means to perform dire
ted simulation, we hope these te
hniques will �ndtheir pla
e as powerful tools for 
ontrol engineers.1.5 Reading GuideThis dissertation assumes that the reader has an undergraduate-level ba
kground inComputer S
ien
e, and has introdu
tory-level knowledge of the following areas:� Global Optimization - A good, brief introdu
tion to the area 
an be foundin [38, Chapter 10℄. [19, 39, 40℄ provide a more thorough survey of modernmethods.� Game-Tree and Tree Sear
h - A good introdu
tion to this area 
an be foundin [41, Chapters 3{5℄. In addition, the reader may want to read the relevantarti
le on re
ursive best-�rst sear
h[25℄.� Cell-Mapping Methods - The most basi
 ideas of [20℄ are suÆ
ient to un-derstand Chapter 3.
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ular 
hapter, dependen
ies between 
haptersare shown in Figure 1.1.
Chapter 3: SASAT Game-Tree Search

Chapter 4: DASAT Game-Tree Search

Chapter 5: SADAT Tree Search

Chapter 6: DADAT Tree Search

Chapter 2: Information-Based Optimization

Figure 1.1: Chapter Dependen
ies



Chapter 2Heuristi
 Optimization for InitialSafety Refutation
2.1 Introdu
tionGiven a simulated hybrid dynami
al system S, a set of possible initial states I, anda set of \unsafe" states U , we wish to verify nonexisten
e of an S-traje
tory from Ito U within tmax time units. We 
all this the initial safety problem. Suppose we aregiven an approximate measure of the relative safety of a traje
tory. More spe
i�
ally,let f be a fun
tion taking an initial state i as input, and evaluating the S traje
toryfrom i su
h that f(i) = 0 if and only if the S-traje
tory from i enters U within tmaxtime units, and f(i) > 0 otherwise. Then veri�
ation of the initial safety problem
an be transformed into the global optimization (GO) problem:mini2I (f(i)) ?> 0GO methods may therefore terminate when i is found su
h that f(i) = 0. Giventhat f does not generally have an analyti
 form, we do not assume the availabilityof derivatives. Sin
e ea
h evaluation of f may require a 
omputationally expensivesimulation, we are parti
ularly interested in GO methods whi
h perform relatively fewevaluations of f . In this 
ontext, we 
ompare several original variants of Simulated16



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 17Annealing (SA) and Multi Level Single Linkage (MLSL) methods and assess theirsuitability for our purposes. We dis
uss the use of knowledge of f gained in the
ourse of GO, and 
onsider the extent to whi
h some GO methods assume spe
ialproperties of the lo
al optimization (LO) pro
edures they use.Finally, we introdu
e the �rst multidimensional extension of information-basedoptimization and show global and lo
al appli
ations of information-based optimiza-tion in our multi-level lo
al optimization ar
hite
ture. These latter 
ontributions areshown to be both (1) 
ompetitive with evaluation 
ounts of prominent global opti-mization te
hniques, and (2) the most reliable means of �nding rare failure s
enariosfor the motivating problem des
ribed in the next se
tion.2.2 Stepper Motor Stall ProblemOur resear
h was largely motivated by the following safety veri�
ation task: Givenbounds on the system parameters of a stepper motor (e.g. vis
ous fri
tion, inertialload), bounds on initial 
onditions (e.g. angular displa
ement and velo
ity), and anopen-loop motor a

eleration 
ontrol, verify that no s
enario exists in whi
h the motorstalls. We model the motor's 
ontinuous dynami
s using ODEs given in [26℄:_� = !_! = �iaNb sin(N�) + ibNb 
os(N�)�D sin(4N�)� Fv! � F
sign(!)� FgJl + Jm_ia = Va � iaR + !Nb sin(N�)L_ib = Vb � ibR� !Nb 
os(N�)Lwhere � and ! are motor shaft angular displa
ement and velo
ity, ia and ib are 
oil Aand B 
urrents, Va and Vb are 
oil A and B voltages, R and L are 
oil resistan
e andindu
tan
e, N is the number of rotor teeth, Nb is the maximum motor torque peramp, D is the maximum detent torque, Fv is the vis
ous fri
tion, F
 is the Coulombfri
tion, Fg is the gravitational torque load, and Jl and Jm are load and motor shaftinertia. For this system we 
lassify a stall as deviation of �N or more radians from the
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Figure 2.1: Simple Stepper Motor Stepping255 250 245 240 235 231 226 222 217 213 209 . . .205 201 197 193 189 185 182 178 175 171 168 . . .164 161 158 155 152 149 146 143 140 137 135 . . .132 129 127 124 122 120 117 115 113 110 108 . . .106 104 102 100 98 96 94 92 90 89 87 85Table 2.1: Stepper Motor A

eleration Table
urrent desired � equilibrium.The motor is stepped by reversing polarity of the 
oil voltages in alternation asshown in Figure 2.1.Changes to 
oil voltages o

ur on su
h a small time s
ale that their 
ontinuoussimulation is judged unne
essary for modeling dynami
s relevant to the veri�
ationtask. Voltage 
hanges were therefore approximated as dis
rete events. Our a

eler-ation 
ontrol is open-loop: At �xed intervals the motor is stepped a

ording to ana

eleration table. The a

eleration table is represented as a sequen
e of delays be-tween ea
h motor step. Ea
h delay is measured in 
ontroller \ti
ks" where 1 ti
k =2.9834e-5 se
. The a

eleration table is shown in Table 2.1.HyTe
h[15, 16℄ is a model 
he
ker for linear hybrid systems. To be more pre
ise,it proves safety of \geometri
ally linear" hybrid systems as opposed to \algebrai
allylinear" hybrid systems. Geometri
ally linear hybrid systems have 
onstant 
ontinuousvariable derivatives. Thus, the set of rea
hable states 
an be 
omputed as a set of
onvex polyhedra using te
hniques from 
omputational geometry. Algebrai
ally linearhybrid systems have ODEs whi
h 
an be expressed in a linear algebrai
 form.



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 19In [17℄, Henzinger, Ho, and Wong-Toi suggest two approa
hes for 
reating linearapproximations of nonlinear hybrid systems: a 
lo
k translation and a rate transla-tion. HyTe
h makes use of an automaton representation of a linear hybrid system.As one in
reases the a

ura
y of the linear approximation, both 
lo
k and rate trans-lations explode the size of the automaton representation exponentially. An approxi-mation of our stepper motor system either (1) has too large a representation for the
omputational 
omplexity of the underlying 
omputational geometri
 algorithms ofHyTe
h, or (2) is too ina

urate su
h that a 
onservative approximation that boundsa
tual system behavior will always yield an \unsafe" verdi
t over the 
ourse of a longstepper motor simulation.So we �rst note that there is no apparent approximation of our system for thetools that are 
urrently available. Next, we note that our veri�
ation is 
on
ernedwith a �xed initial time interval (i.e. during a

eleration) and is therefore an initialsafety problem. Finally, we note that we 
an 
ompute minimum angular displa
ementfrom a stall state over all simulation states as a simple heuristi
 to numeri
ally ratethe relative safety of safe traje
tories. We 
an now ask, \For all possible systemparameters and initial states, are all simulation traje
tories rated safe?" Put anotherway, \Is the minimum heuristi
 evaluation of all possible simulations greater thanzero?" If we 
an answer this optimization question positively, we have veri�ed safetyof our hybrid system.One 
ould argue that su
h optimization is not veri�
ation, that one 
annot ex-haustively simulate all possibilities and 
an therefore have no guarantees. One 
anonly use su
h optimization for refutation. To this, we o�er two responses: First, if onehas additional knowledge of 
hara
teristi
s of one's heuristi
 evaluation fun
tion (e.g.Lips
hitz 
onditions), then an intelligent optimization approa
h 
an utilize su
h 
har-a
teristi
s to guarantee a stri
tly positive minimum with suÆ
ient evaluation (e.g. ofa global solution set for a Lips
hitzian global optimization problem[36℄). The key isto provide a heuristi
 evaluation that indu
es a helpful sear
h lands
ape without itselfbe
ome overly burdensome 
omputationally. Se
ond, if one has no su
h knowledgeabout the heuristi
, the absen
e of veri�
ation te
hniques well-suited to non-trivialdynami
s leaves good global optimization as the best assuran
e. Our desire is to



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 20develop an information-based GO method whi
h, when halted without �nding anunsafe traje
tory, provides some measure of the thoroughness of its sear
h.This said, we have endeavored to study a number of representative global opti-mization te
hniques in order to assess their suitability to our purpose and point theway towards future innovation.2.3 Algorithms and test problemsIn this se
tion, we des
ribe the global optimization (GO) algorithms used in thisstudy, the lo
al optimization pro
edures used by them, and the test fun
tions tobe minimized. Author-supplied default settings were used for GO algorithms whenpossible. Otherwise, reasonable parameters were held 
onstant throughout testing.Sin
e our goal is to perform a 
omputationally expensive optimization, we woulddesire an algorithm whi
h reliably and eÆ
iently gives the desired result withouttuning. Experien
ed users of su
h algorithms applying problem- and domain-spe
i�
knowledge to the 
hoi
e of options and parameters 
ould expe
t to yield better results.The �rst set of algorithms we 
onsider are variants of simulated annealing (SA) [29,22℄. SA algorithms are theoreti
ally guaranteed to �nd the global minimum of a fun
-tion provided that the annealing s
hedule starts with suÆ
iently high temperatureand 
ools suÆ
iently slowly. However, this guarantee 
omes at great expense interms of fun
tion evaluations. Finding a suitable annealing s
hedule whi
h balan
esthe tradeo� of reliability versus eÆ
ien
y is key to the pra
ti
ality of SA for ourpurposes.AMEBSA [38, pp. 451-455℄ performs SA by modifying a downhill simplex method[38, pp. 408-412℄ su
h that a
tual fun
tion values of simplex points and possible re-pla
ement points are perturbed a

ording to the temperature parameter when makingmove de
isions. Sin
e AMEBSA has no default annealing s
hedule, we have 
hosen touse the one supplied in the authors' example [37, pp. 182-184℄. ASA1 [21℄, \adaptivesimulated annealing", is a SA variant that relies on randomly importan
e-sampling1ASA software developed by Lester Ingber and other 
ontributors is available at URLhttp://www.ingber.
om/ or ftp://ftp.ingber.
om.
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h spa
e and adapts separate annealing s
hedules for ea
h parameter. Theautomati
 adaptation of the annealing s
hedule trades o� reliability for eÆ
ien
y.SALO [10℄ seeks to 
ombine the theoreti
al guarantees of SA with the eÆ
ien
y oflo
al optimization (LO). SALO on f is SA on f 0, where f 0 is f transformed by LO. Atea
h point that SA evaluates, LO takes pla
e and the value of the lo
al minimum isreturned. This is intended to \
atten" f and speed 
onvergen
e to the global min-imum. In both implementations des
ribed here and in [10℄, ASA is used as the SAmethod. In doing so, we again tradeo� reliability for eÆ
ien
y. When ea
h of theseSA methods halts unsu

essfully, it is restarted from the lowest point found thus far.The se
ond set of algorithms we 
onsider are variants of Multi Level Single Linkage(MLSL) [40℄. MLSL uniformly, iteratively samples the sear
h spa
e and performs LOsele
tively. For ea
h iteration, a new bat
h of points is evaluated. For ea
h point sam-pled, LO takes pla
e if there exists no lower sampled point within a 
riti
al distan
e.2.MLSL1 is the original algorithm[40℄. MLSLD is our variant of MLSL1 whi
h assumes thatthe LO pro
edure is deterministi
 and should therefore never be repeated from thesame sampled point. MLSLO is another variant of ours that orders optimizations forea
h iteration by as
ending fun
tion value of sampled points. MLSLOD has both vari-ations. Our fourth variant, MLSLSA, alternates iterations of MLSLOD with runs of ASA,using the 
urrent minimum as the initial point for ASA. LMLSL is our variant of MLSL1whi
h performs \lazy" fun
tion evaluation. That is, the fun
tion value of a point isonly evaluated when it be
omes ne
essary. This avoids the relatively large initial 
ostwhen optimizing simple fun
tions. LMLSL� is LMLSL using an �-des
ent LO pro
edure.An epsilon-des
ent pro
edure guarantees that, for a step greater than �, the fun
tionvalues at epsilon intervals are sequentially des
ending.RANDLO simply performs random lo
al optimizations and is intended to providea baseline for understanding how well LO knowledge is used by SALO and MLSLmethods. MONTE is a Monte Carlo method, the weakest method of those we 
onsider.We next des
ribe the lo
al optimization pro
edures used by some of these globaloptimization algorithms. FMINU and CONSTR areMatlabTM optimization fun
tions [13℄.2We used the 
riti
al distan
e parameter � = 2 with 100 points generated per iteration.



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 22AMEBSA SA simplex methodASA Adaptive Simulated AnnealingCONSTR Sequential quadrati
 programming methodFMINU Quasi-Newton LOFMINU� FMINU with �-des
ent LOLMLSL MLSL with lazy f evaluationLMLSL� LMLSL with �-des
ent LOMLSL Multi-Level Single LinkageMLSL1 basi
 MLSL methodMLSLD MLSL assuming deterministi
 fMLSLO MLSL with ordering heuristi
MLSLOD MLSLO + MLSLDMLSLSA MLSLOD and SA in su

essionMONTE Monte Carlo methodRANDLO Random LOSA Simulated AnnealingSALO SA with LOYURETMIN Yuret's LOTable 2.2: Algorithm Qui
k Referen
eFMINU performs un
onstrained optimization using a quasi-Newton method with aBFGS formula for updating the Hessian matrix approximation. FMINU� is our �-des
ent modi�
ation of FMINU. CONSTR performs 
onstrained optimization using asequential quadrati
 programming method. We supply sear
h spa
e bounds and noadditional 
onstraints. YURETMIN is our variant of Yuret's Masters thesis Pro
edure4-1 [54, p.33℄ whi
h allows spe
i�
ation of sear
h spa
e bounds.A qui
k referen
e table for algorithms is given in Table 2.2.Finally, we referen
e the obje
tive fun
tions used for 
omparing the global op-timization algorithms. The �rst part of our study uses fun
tions sele
ted from GOliterature and algorithm demonstrations in order to reveal their relative merits. RASTis a s
aled Rastrigin fun
tion [10℄. HUMP is the six-hump 
amelba
k fun
tion [6℄. G-Pis the Goldstein-Pri
e fun
tion [6℄. GW1 and GW100 are 6-dimensional Griewank fun
-tions with bounds of ea
h dimension [�1; 1℄ and [�100; 100℄ respe
tively [10℄. SWISS



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 23CMMR 4-D paraboloid with troughsG-P Goldstein-Pri
e fun
tionGW1 Griewank fun
tion with [�1; 1℄ boundsGW100 Griewank fun
tion with [�100; 100℄ boundsHUMP 6-hump 
amelba
k fun
tionRAST Rastrigin fun
tionSTEP1 Stepper motor stall problem fun
tionSTEP2 STEP1 logarithmi
ally s
aledSWISS 4-D paraboloid with pitsTable 2.3: Obje
tive Fun
tion Qui
k Referen
eis a 4-D paraboloid with a latti
e of many 
ir
ular pits [37℄. CMMR is a 4-D paraboloidwith a grid of deep troughs [8℄. GW100, SWISS, and CMMR have many lo
al minima.RAST has a moderate number. HUMP, G-P, and GW1 have few. RAST, GW100, SWISS,and CMMR are generally paraboloid in shape with di�erent lo
al minima \traps". Allslope up to the bounds of the sear
h spa
e.The se
ond part of our study 
on
erns the motivating example for this resear
h.Test fun
tion STEP1 takes as input two parameters (vis
ous fri
tion and load inertia)of the stepper motor model, simulates a

eleration of the motor, and performs asimple heuristi
 evaluation of the traje
tory by 
omputing the minimum distan
e toa stall state (0 if stalled). Su
h a heuristi
 fun
tion is often simple to 
onstru
t. STEP2is STEP1 logarithmi
ally s
aled so as to fo
us on the unsafe region of the parameterspa
e. These fun
tions are shown in Figures 2.2 and 2.3.A qui
k referen
e table for obje
tive fun
tions is given in Table 2.3.2.4 ResultsOur �rst tests made use of LO pro
edure FMINU where appli
able. 100 optimizationtrials were performed for ea
h obje
tive fun
tion with a maximum of 10000 fun
tionevaluations permitted per trial. Ea
h obje
tive fun
tion was o�set (if ne
essary) to
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essful trial was one in whi
h the optimiza-tion routine found a point with fun
tion value less than .001 within 10000 fun
tionevaluations. This simulates situations where one is seeking a rare failure 
ase in f .Ea
h entry in the table of results (Table 2.4) shows the number of su

essful trials(upper left) and the average number of fun
tion evaluations for su
h trials (lowerright). RAST HUMP G-P GW1 GW100 SWISS CMMRAMEBSA 16 100 90 100 0 100 239 40 222 86 N/A 1340 5674ASA 100 100 100 100 2 100 100404 225 1042 197 6003 903 3756SALO 100 100 100 100 95 100 0585 65 97 85 4501 163 N/AMLSL1 100 100 100 100 47 100 0872 154 170 185 4315 239 N/AMLSLD 100 100 100 100 60 100 0636 154 170 185 4492 238 N/AMLSLOD 100 100 100 100 52 100 0556 130 132 173 4370 253 N/AMLSLSA 100 100 100 100 22 100 99544 131 130 174 2609 254 5019LMLSL 100 100 100 100 50 100 0847 105 118 96 4508 187 N/ALMLSL� 100 100 100 100 53 100 0638 96 109 93 3864 192 N/ARANDLO 100 100 100 100 58 100 0706 70 96 85 4008 146 N/ATable 2.4: Su

essful global optimization trials and average fun
tion evaluationsGiving the best performan
e in nearly half of the tests, RANDLO performed sur-prisingly well, espe
ially for SWISS whi
h has a 4-D latti
e of numerous \traps". AsRANDLO's LO pro
edure, FMINU is 
learly rarely 
aught in su
h traps. Sin
e both trapand non-trap regions are paraboloid surfa
es, they e�e
tively \point" to the globalminimum for LO pro
edures su
h as FMINU. The simple but important observationhere is that lo
al optimization does not ne
essarily �nd the nearest lo
al optimum.We next observe that both SALO and MLSL ea
h rely somewhat on nearness of LO.We will later turn our attention to the relationship between the global and lo
al layersof ea
h. FMINU, whi
h assumes f is 
ontinuous, behaved understandably poorly for
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ontinuous CMMR. Thus all methods dependent entirely on LO failed all CMMRtrials. Given that the 
hara
teristi
s of f may not be well understood, this meansthat a less eÆ
ient LO pro
edure making fewer assumptions would likely be bettersuited to our purposes.SALO yielded performan
e similar to that of RANDLO where few LOs suÆ
ed and sig-ni�
antly better where more lo
al optima trapped LO (e.g. in RAST and GW100). At theheart of SALO's design is the following intention: \SA helps in lo
ating good regionsof the sear
h spa
e, while the lo
al optimizer is used to rapidly hit the optimum."[10℄It is 
lear from this 
omparison that SALO does indeed su

essfully apply SA on f 0 to�nd good regions of f . When 
omparing ASA with SALO, it also appears that the 
ostfor transforming f FMINU! f 0 is usually more than 
ompensated for by the eÆ
ien
ygained.SALO was designed with hope that f 0 would be a \simpler" surfa
e than f , re
e
t-ing the fun
tion value of the nearest optimum. Interestingly, the designers' experi-ments utilized Yuret's LO pro
edure whi
h has short term memory and takes in
reas-ingly greater steps downhill as su

ess allows. Su
h a LO pro
edure 
an possibly passover nearest lo
al minima as step size be
omes large. Also Yuret's pro
edure, beingsto
hasti
, does not simply transform one surfa
e to another. Nevertheless, their ex-periments and ours indi
ate that ASA is able to handle su
h LO output gra
efully inthe long run. The fa
t that SALO outperforms RANDLO for harder optimization prob-lems is spe
i�
ally a property of SA and more generally a form of learning. One 
anview the 
hanging state probability distribution of SA as a gradual a

umulation ofknowledge about the lo
ation of the global minimum. While su
h learning is e�e
tivegiven a suitable annealing s
hedule, it is also weak. Heavily traversed lo
al minimamay be heavily traversed again. All but one of the fun
tion evaluations made inLO are ignored. Mu
h information is wasted. Nonetheless, SALO's performan
e wasimpressive.Performan
e of MLSL methods, though similar to that of RANDLO, yields little to
ommend them over RANDLO. That sele
tive uniform random LO should perform worsethan unsele
tive uniform random LO suggests an assumption in MLSL whi
h is notmet in our study. Following the analysis more 
losely in both [39℄ and [40℄, we see that
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edure is assumed to be an �-des
ent pro
edure su
h that the 
urrent
riti
al distan
e e�e
tively bounds the step size of LO.3 We therefore modi�ed FMINUto be an �-des
ent pro
edure and tested LMLSL� for 
omparison. Although LMLSL� issomewhat of an improvement over LMLSL, it is still generally worse than RANDLO. �-des
ent does not therefore appear to help us mu
h. We 
onje
ture that MLSL methodsdominate RANDLO for obje
tive fun
tions where LO is trapped in many minima, andthat SALO dominates MLSL methods for su
h obje
tive fun
tions in our study be
auseour f 0-surfa
es are easily globally optimized with LO. To elu
idate the latter point,
onsider RAST, GW100, and SWISS. LO roughly transforms ea
h into a paraboloidof plateaus. LO of su
h LO-transformed fun
tions 
an then eÆ
iently lead to theglobal optimum. We 
an view the task of global optimization as multi-level lo
aloptimization. The base-level LO0 takes advantage of whatever information about fis available (
ontinuity, gradients, et
.), the next level LO1 is suited to the 
lass ofone's LO0-transformed fun
tion f 0, and so on. We may stop after arbitrarily many(probably 2-3) LO levels and perform global optimization at the top level. The roleof ea
h LO level is to enlarge the regions leading to global optima. Multi-Level lo
aloptimization methods we have developed are presented in Se
tion 2.7.3.Regarding MLSL methods, let us also note that, like SALO, they all but ignoreinformation gained through LO. Uniformly sampled points are lo
ally optimized basedonly on the values of sampled points within a 
riti
al distan
e. Again we �nd greatwaste of information gained at great expense.AMEBSA gave mixed results whi
h 
an likely be attributed to the la
k of anneal-ing s
hedule tuning. Perhaps an adaptive annealing s
hedule would make AMEBSAmore suitable for su
h problems. ASA's eÆ
ien
y was unpredi
table, although it wasperhaps the most reliable method for this set of obje
tive fun
tions.While these fun
tions may give a general indi
ation of the relative strengths ofthese methods without tuning, the fun
tions share a 
ommon property undesirable forour purposes: The un
onstrained global minimum is never lo
ated at or beyond thebounds of the sear
h spa
e. Therefore, our optimization methods need not perform3This is nowhere mentioned in survey [3℄ and is not emphasized elsewhere in the literature.



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 28STEP1 STEP2ASA 0 2N/A 497SALO 10 580 202MLSLOD 10 10127 191LMLSL 10 10163 137RANDLO 10 1078 359MONTE 0 6N/A 469(a) CONSTR

STEP1 STEP2ASA 0 2N/A 497SALO 7 9387 198MLSLO 4 10790 231LMLSL 3 10389 169RANDLO 9 10501 172MONTE 0 6N/A 469(b) YURETMINTable 2.5: Results for STEP1 and STEP2well along the bounds of our sear
h spa
e. It is for this reason that un
onstrainedFMINU was suitable for use with su
h global optimizations. We used this as an oppor-tunity to try two 
onstrained LO pro
edures CONSTR and YURETMIN for the steppermotor test problems STEP1 and STEP2. For this testing, we performed 10 trials to�nd a fun
tion value of 0 with a maximum of 1000 fun
tion evaluations per trial. Theresults appear in the tables of Table 2.5.Sin
e both STEP1 and STEP2 have a small number of lo
al minima along thebounds of the sear
h spa
e, behavior of LO again �gured most signi�
antly in ourresults. Despite the fa
t that mu
h of the sear
h spa
e slopes downward away fromthe 
orner where failures o

ur, CONSTR had a bias towards looking in that parti
ular
orner. It was thought that STEP2 (log-log s
aled STEP1) would be an easier fun
tionto optimize, but this was not the 
ase. Not only was the global minimum basinexpanded, but nearby lo
al minima also expanded, trapping LO more often.ASA's fun
tion evaluation expenses were su
h that it was outperformed by MONTE.The remaining LO-based methods performed similarly overall. The 
ost of 
omputingsimple heuristi
 information about relative safety of traje
tories is usually more than
ompensated for by eÆ
ien
y in dis
overing unsafe traje
tories through optimization.For both LO pro
edures, RANDLO gave best performan
e for STEP1 and LMLSL gave
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e for STEP2. Although there was no universal \winner" among globaloptimization pro
edures, it is en
ouraging to note that pro
edures su
h as SALO andLMLSL 
ould be run in parallel to a
hieve respe
table, more reliable results. The 
hoi
eof LO pro
edure proved very signi�
ant for performan
e, whi
h again unders
oresthe importan
e of developing robust, eÆ
ient LO pro
edures suited to large 
lassesof fun
tions.2.5 Con
lusions of Comparative StudyWhile no global optimization pro
edure was generally dominant in our 
omparativestudy, random lo
al optimization seemed best suited for obje
tive fun
tions with fewminima, and SALO with ASA seemed best suited for obje
tive fun
tions with manyminima. By making use of ASA for SA, one both avoids the need to spe
ify anannealing s
hedule and bene�ts from its relative eÆ
ien
y among SA algorithms.Although one is en
ouraged to make use of ASA's options to improve performan
e, wehave not done so and have been pleased with most results nevertheless.SALO and MLSL methods perform global optimization with global and lo
al sear
hphases, and rely on lo
al optimization for eÆ
ien
y. However, both methods makelittle or no use of information gained in the 
ourse of lo
al optimization. We believethat great progress will be made in global optimization when global optimization andlo
al optimization are seamlessly integrated to share knowledge gained of f . Whereevaluation of f is 
omputationally expensive, it is worth 
omputational expense toutilize su
h knowledge for the eÆ
ien
y of global optimization. To this end, we havedeveloped a set of information-based optimization te
hniques where ea
h optimizationstep is 
hosen with respe
t to the information gained thus far.2.6 Information-based global optimizationIn this se
tion, we look at a parti
ular 
lass of global optimization te
hniques whi
hare suited to spe
i�
 
hara
teristi
s of our problem. We des
ribe previous informationapproa
hes to optimization, and present our own spe
ialization of su
h te
hniques for



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 30initial safety refutation.From the previous 
omparative study, we noted that most global optimizationmethods throw away most of the information gained in the 
ourse of optimization.For our purposes, ea
h evaluation of f requires a simulation and an evaluation of thatsimulation whi
h may be 
omputationally expensive, so we are parti
ularly motivatedto make good use of su
h information in order to redu
e the fun
tion evaluationsneeded.One approa
h is to 
hara
terize properties of the set of fun
tions one wishes tooptimize and to use su
h information to 
onstru
t an optimal de
ision pro
edurefor optimization. In the 
ourse of optimization, we use our 
urrent set of fun
-tion evaluations to de
ide on the next best point to evaluate with respe
t to ourfun
tion set. Su
h is the strategy of Bayesian or information approa
hes to globaloptimization[30, 31, 44, 49℄, whi
h have optimal average-
ase behavior over the set offun
tions for whi
h ea
h is designed.2.6.1 Strongin's Information Approa
hThe information approa
h to optimization was proposed by Roman Strongin in [47, 48,(in Russian)℄. The �rst English publi
ation of this work 
an be found in [49℄. Mostoptimization te
hniques rely on some form of assumptions of obje
tive fun
tion prop-erties. Some te
hniques assume a fun
tion is Lips
hitzian in order to bound solu-tions. Others assume the fun
tion is nearly paraboli
 near minima in order to 
laimquadrati
 
onvergen
e. Rather than rely on a restri
tive 
onstraint language to de�neproperties of the fun
tions of interest, Strongin sought to instead use a probabilitymeasure on the 
lass of fun
tions under 
onsideration. Ea
h step of his informationapproa
h to global optimization 
onsists of a maximum likelihood estimation basedon the results of previous iterations.In [49℄, Strongin derives an implementation of the information approa
h for a



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 31one-dimensional root-�nding problem. Strongin's derivation is based on a probabilis-ti
 preferen
e for fun
tions whi
h satisfy a H�older 
ondition4 at the root. He alsoderives an implementation of the information approa
h for a one-dimensional globaloptimization problem. The derivation, des
ribed as similar to that of the root-�ndingalgorithm, is not given in [49℄, but rather appears in [47℄.In dealing with multidimensional obje
tive fun
tions, Strongin applies his one-dimensional approa
h through use of volume-�lling Peano 
urves. Simply put, a uni-form grid of points in the volume is 
onne
ted by a single line su
h that the line 
omeswithin a 
ertain distan
e � of every point in the volume. The su

essive re�nementof a Peano 
urve in two dimensions is shown in Figure 2.4. One-dimensional opti-mization is performed on this line as an approximation of the multidimensional globaloptimization problem. The problem with this approa
h is that a simple, multidimen-sional, global optimization with one optimum looks like a 
omplex optimization alongthe Peano 
urve with lo
al optima in
reasing with ea
h Peano 
urve re�nement. For asmall �, the 
urve must have su
h 
omplexity that the 
orresponding one-dimensionaloptimization problem be
omes needlessly 
omplex. This is the pri
e paid for applyingone-dimensional optimization to multidimensional problems. In the next se
tion, wewill introdu
e the �rst truly multi-dimensional information approa
h to optimization.Yaroslav Sergeyev augmented Strongin's information approa
h to global optimiza-tion with lo
al tuning based on 
hange in the lo
al Lips
hitz 
onstant5 of the obje
tivefun
tion over di�erent segments of the sear
h region. Sergeyev also re
ommended ap-pli
ation of the method using Peano 
urves. We implemented Sergeyev's informationapproa
h with lo
al tuning and used Peano 
urves to apply the approa
hes to mul-tidimensional obje
tive fun
tions of our 
omparative study. The results were disap-pointing. Not only was the su

ess of results very sensitive to a reliability parameterr, but sampling irregularities introdu
ed by the Peano 
urve were 
learly visible assharp sampling density 
ontrasts were observed a
ross quadrant and subquadrantboundaries.4A H�older 
ondition is a Lips
hitz 
ondition jf(x)� f(y)j � A(y) jx� yj� of order � with Lips-
hitz 
onstant A.5A lo
al Lips
hitz 
onstant is a real number 
 su
h that jf(x)� f(y)j � 
 jx� yj for all y lo
alto x.
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Figure 2.4: Re�nement of Peano 
urve in two dimensions



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 332.6.2 Information-Based Optimization for RefutationOur information-based optimization approa
h to refutation is most strongly in
u-en
ed by the reasoning behind Strongin's approa
h. We desired a simple means of
hara
terizing obje
tive fun
tions whi
h (1) gave rise to a 
omputationally simpleoptimal de
ision pro
ess, and (2) allowed dis
ontinuities in obje
tive fun
tions. Fur-thermore, the purpose of our optimization is not simply to �nd the global minimum.Rather, we know we are seeking a zero of a non-negative, real-valued fun
tion. In-stead of seeking the most likely minimum value, we spe
i�
ally seek a zero in orderto refute initial safety of a hybrid system.Our approa
h relies on two main assumptions about the probability measure onthe 
lass of fun
tions we 
onsider. The �rst assumption is that the fun
tions are moreoften lo
ally 
ontinuous than not. This does not pre
lude dis
ontinuities in fun
tions.A zero is just as likely to o

ur anywhere in the 
lass of dis
ontinuous fun
tions, so werely on there being some lo
al 
ontinuity for the maximum likelihood approa
h to bebene�
ial. As we will see, this approa
h 
an be surprisingly robust to dis
ontinuitiesin the 
ontext of multi-level optimization te
hniques.Our se
ond assumption is that lower lo
al Lips
hitz 
onstants are more likely thanhigher lo
al Lips
hitz 
onstants. The rami�
ation of this likelihood assumption is thatzeros are most likely to o

ur where they require a minimal Lips
hitz 
onstant giventhe sample points evaluated thus far. On a one-dimensional 
urve, the optimizationpro
ess is simple. First, both endpoints are evaluated. The next point most likelyto be a zero will be that whi
h minimizes slope between itself and neighboring (i.e.adja
ent) evaluated points along the line. This most likely 
andidate is evaluated,and the pro
ess is repeated until a zero is found or the optimization is terminated. Inthe next se
tion, we see that there are signi�
ant diÆ
ulties to over
ome in applyingsu
h an approa
h in more than one dimension.



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 342.7 Multi-Dimensional, Multi-Level Information-Based OptimizationPrevious information-based methods have been limited to global optimization in onedimension. In this se
tion, we introdu
e two new information-based optimizationmethods for multidimensional problems. We �rst introdu
e the de
ision pro
edureused by these methods, thus expli
ating the 
lass of fun
tions for whi
h the de
i-sion pro
edure is biased. Next we dis
uss the use of multi-level lo
al optimizationfor speeding 
onvergen
e. Finally, we introdu
e the information-based optimizationalgorithms themselves.2.7.1 De
ision pro
edureAt ea
h iteration i of our algorithm, we wish to evaluate our heuristi
 fun
tion f atthe lo
ation xi for whi
h f(xi) = 0 is most likely to o

ur. We base our notion oflikelihood on 
hara
teristi
s of a 
lass of fun
tions to whi
h f belongs. Our de
i-sion pro
edure is then based on some de
ision ranking fun
tion gi whi
h 
omputes aranking 
orresponding to the relative likelihood of a zero o

urring at an unevaluatedpoint xi given previous f -evaluations at x1; x2; : : : ; xi�1:gi(xi) def= g(x1; x2; : : : ; xi�1; xi)So for ea
h iteration i, we 
ould globally optimize gi to 
hoose the next x for whi
hf is evaluated. However, a reliable global optimization of g for ea
h iteration of aglobal optimization of f is not only 
omputationally prohibitive, but in
reasinglyvery diÆ
ult as well. We instead desire to approximate an optimal de
ision withrespe
t to our assumptions about f , and we do so by uniformly, randomly samplingg, returning the optimum of the samples. We 
all this DECISION1 (Algorithm 1).The 
omputational 
omplexity of this de
ision pro
edure grows as the 
omputational
omplexity of evaluating gi (whi
h we will see is O(i2)).
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ision fun
tionDECISION1(L, lBound , uBound). Input: a list of fx,f(x)g pairs,the lower bounding 
orner of the sear
h spa
e, andthe upper bounding 
orner of the sear
h spa
e.Output: minimum pointmin gx  1for i  1 to maxPts dox  uniformly random ve
tor in spa
e bounded by lBound and uBoundgx  g(L, x )if (gx < min gx ) thenmin gx  gxmin x  xreturn min xIn order to 
onstru
t g, we must make some assumptions over f 's 
lass of fun
-tions with regard to where we would most expe
t to �nd zeros. One assumption wemake is that f is 
ontinuous6. Another assumption 
on
erns 
atness and smoothnesspreferen
es: Given a set of points and their f-evaluations, a zero is more likely too

ur where it demands less slope between itself and previous points.A �rst attempt at 
onstru
ting gi might be to 
reate a fun
tion whi
h returnsgi(x) = i�1maxj=1 f(xj)kxj � xk :That is, we 
ould rank the likelihood of f(x) = 0 by 
omputing the maximum slopebetween the hypotheti
al zero at x and other points we have already evaluated. Thelesser the g-value, the more likely a zero f -value. The global minimum of g wouldthen be the optimal point at whi
h to next evaluate f given previous f evaluations.Consider Figure 2.5.Suppose we have evaluated the 
urve at points a, b, and 
 and are using su
h ag as our de
ision ranking fun
tion. Intuitively, we would want g to return point d asthe next best point to evaluate. However, the slope between a and d will make d aless preferable de
ision point than one to the right of d for whi
h a zero would have6This is not a trivial assumption for our general appli
ation, of 
ourse. Our stepper motor systemtraje
tories are 
ontinuous in the initial 
ondition. Su
h 
ontinuity is preserved in our 
hoi
e of f .
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a

b

d?

c

0Figure 2.5: Shadowing exampleequal slopes to a and 
 for this simple fun
tion. We would like instead for point b to\shadow" point d from point a. Our simple attempt to do so is shown as Algorithm 2.A point a is \shadowed" from point d by point b for fun
tion g if jjd� bjj < jjd� ajjand jg(a)� g(b)j=jja� bjj > jg(a)� g(d)j=jja� djj. That is, a is shadowed by b if bis 
loser to d than a and the slope between a and b on g is greater than the slopebetween a and d on g.The average-
ase optimality of the information-based approa
h relies on maximumlikelihood assumptions over a 
lass of obje
tive fun
tions. One of these assumptions isa greater likelihood for lesser lo
al Lips
hitz 
onstants. In one dimension, lo
al Lips-
hitz 
onstants are 
omputed with respe
t to the adja
ent previously evaluated pointsalong the 
urve. In more than one dimension, we must de�ne \lo
al". If we in
ludeall previously evaluated points in the 
omputation of lo
al Lips
hitz 
onstants, then\lo
al" really means \global" over the entire sear
h spa
e. In evaluating 
andidatepoints with the shadowing approa
h, we restri
t our attention to non-shadowed evalu-ated points as we 
ompute lo
al Lips
hitz 
onstants. If, for any 
andidate point, lowerLips
hitz 
onstants are more likely between a zero at that point and non-shadowedevaluated points, then our approa
h retains average-
ase optimality. Shadowing is aheuristi
 approa
h to relevan
e, and is helpful to the extent that it more a

uratelyre
e
ts maximum likelihood of zeros for problems of interest.
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ision pro
edure fun
tion to be optimizedg(L, x). Input: a list of fx, f(x)g pairs,the 
urrent de
ision point being evaluated.Output: ranking of likelihood that x is a zerofor i  1 to length(L) dodx[i℄  kx � �rst(L[i℄)ksort dx in as
ending order and permute L a

ordinglymaxSlope  0for i  1 to length(L) doslope  se
ond(L[i℄)=dx[i℄if (slope > maxSlope) thennewMaxSlope  truefor j  1 to i � 1 dootherSlope  jse
ond(L[i℄)� se
ond(L[j℄)j=k�rst(L[i℄)� �rst(L[j℄)k. Note: This otherSlope information may be 
a
hed.if (otherSlope > slope) thennewMaxSlope  falsebreak from for loop (j)if (newMaxSlope) thenmaxSlope  slopereturn maxSlope2.7.2 Multi-Level Lo
al OptimizationOne might then 
onstru
t the simple information-based global optimization pro
eduregiven in Algorithm 3.However, we note that one rami�
ation of random sampling in our de
ision pro
e-dure is that we do not a
hieve eÆ
ient 
onvergen
e. This is illustrated in Figure 2.6,whi
h shows an information-based global optimization of a two-dimensional 
ir
ularparaboloid with a zero at the origin. From the initial random point in the lower left
orner, the pro
edure then 
he
ks points in the upper right, lower right, upper left,and just left of the global minimum at the 
enter. The 
luster of 25 points that followsgradually expands towards the 
enter from the �fth point. In pra
ti
e, where failuresdo not o

ur in minis
ule regions, this slow 
onvergen
e is not a problem. However,we also note that our de
ision pro
edure will have to deal with the 
omputationalburden of small dense 
lusters of points whi
h are not very informative globally. We



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 38Algorithm 3 Simple information-based global optimizationinfo-based-opt(lBound , uBound). Input: the lower bounding 
orner of the sear
h spa
e, andthe upper bounding 
orner of the sear
h spa
eH  fgnewx  random point in sear
h spa
efx  f(newx )if (fx = 0) thenterminate with su

essH  append(H , fnewx , fxg)while (true) donewx1  DECISION1(H , lBound , uBound)fx  f(newx )if (fx = 0) thenterminate with su

essH  append(H , fnewx , fxg)may wish instead to apply a rapidly 
onvergent lo
al optimization pro
edure and payattention only to the �rst and last points of su
h an optimization.In our previous 
omparative study, we note that this is a 
ommon approa
hamong the most su

essful methods of the study. A global sear
h phase makes useof a lo
al optimization subroutine so that the global phase is, in e�e
t, sear
hingf 0(x1) def= f(x2) where fx2; fming = LO(f; x1), where LO is a lo
al optimization pro-
edure. In SALO [10℄ (simulated annealing atop lo
al optimization), for ea
h pointevaluation in the global phase, a lo
al optimization takes pla
e and the fun
tion valueof the lo
al minimum is asso
iated with the original point. The e�e
t 
an be roughlydes
ribed as a \
attening" of a sear
h spa
e into many plateaux (with plateaux 
or-responding to lo
al minimum values). This sear
h paradigm may be generalized toarbitrary levels where ea
h level performs some optimizing transformation of its sear
hlands
ape to 
reate a \simpler" one for the level above. Obviously, the work done tosimplify should be more than 
ompensated for by the redu
ed sear
h e�ort for thelevel above. The top level performs a global optimization, and all lower levels performlo
al optimization. We 
all this paradigm Multi-Level Lo
al Optimization (MLLO).We assert that information-based optimization is parti
ularly well-suited to optimiz-ing 
oarsely plateaued sear
h lands
apes. Now let us 
onsider two information-based
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Figure 2.6: Information-based global optimization of 2-D 
ir
ular paraboloidappli
ations of MLLO.2.7.3 MLLO-IQ and MLLO-RIQMLLO-IQ (Algorithm 4) is a 2-level MLLO with a simple information-based approa
h(Algorithm 3) atop quasi-Newton lo
al optimization. With ea
h iteration, MLLO-IQ
hooses a point x1, lo
ally optimizes f from x1 to x2, and asso
iates f(x2) with bothx1 and x2 in order to \plateau" the spa
e. In doing so, we limit the number offun
tion values involved in de
ision making. Still, we may wish to further limit su
hgrowth in 
omputational 
omplexity. By limiting our information-based sear
h to ahypersphere 
ontaining a maximum limit of previously evaluated points, we limit the
omplexity to a 
onstant. Su
h is the approa
h taken in MLLO-RIQ.MLLO-RIQ (Algorithm 5) begins with a lo
ally minimized random point and a



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 40Algorithm 4 MLLO-IQMLLO-IQ(lBound , uBound). Input: the lower bounding 
orner of the sear
h spa
e, andthe upper bounding 
orner of the sear
h spa
eH  fgnewx1  random point in sear
h spa
efnewx2 , fxg  LO(f , newx1 )if (fx = 0) thenterminate with su

essH  
on
atenate(H , ffnewx1 , fxg, fnewx2 , fxgg)while (true) donewx1  DECISION1(H , lBound , uBound)fnewx2 , fxg  LO(f , newx1 )if (fx = 0) thenterminate with su

essH  
on
atenate(H , ffnewx1 , fxg, fnewx2 , fxgg)maximum sear
h radius. Together these de�ne our initial hypersphere. With ea
h it-eration, a de
ision pro
edure (DECISION2) �nds an approximately optimal next pointto lo
ally optimize within this hypersphere. If the new point has a lesser fun
tionvalue than the 
enter, it be
omes the new 
enter and the distan
e between the twopoints be
omes the new hypersphere radius. If too many points are being 
onsideredin DECISION2, a lesser amount of points 
losest to 
enter are retained and the sear
hradius is adjusted. This information-based lo
al optimization terminates when thenumber of times the 
enter minimum is found by lo
al optimization ex
eeds a thresh-old. Then the pro
ess repeats with a new random point. Thus we perform a randomsear
h of information-based lo
al optimizations of quasi-Newton lo
al optimizations.2.8 Experimental resultsWe now 
ompare our information-based approa
hes to those 
onsidered in our previ-ous 
omparative study. Our �rst tests all made use of the same quasi-Newton lo
aloptimization method where appli
able. As before, 100 optimization trials were per-formed for ea
h obje
tive fun
tion with a maximum of 10000 fun
tion evaluations
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Algorithm 5 MLLO-RIQMLLO-RIQ(lBound , uBound , maxRadius). Input: the lower bounding 
orner of the sear
h spa
e,the upper bounding 
orner of the sear
h spa
e, andmaximum radius of lo
al hypersphere sear
hH  fgradius  maxRadiuswhile (true) dox  random point in sear
h spa
ef
enter , 
enterValg  LO(f , x )if (
enterVal = 0) thenterminate with su

essH  
on
atenate(H , ffx , 
enterValg, f
enter , 
enterValgg)sort pairs in H in as
ending order of k�rst(pair)� 
enterkH'  up to �rst minPts pairs of H
enterHits  0while (
enterHits > maxCenterHits) dore
enter  falsenewx1  DECISION2(H' , 
enter , radius)fnewx2 , fxg  LO(f , newx1 )if (fx = 0) thenterminate with su

essif (knewx2 � 
enterk < toleran
e1 ) then
enterHits  
enterHits + 1if (
enterVal � fx > toleran
e2 ) thenradius  min(maxRadius, knewx2 � 
enterk)
enter  newx2
enterVal  fx
enterHits  0re
enter  trueH  
on
atenate(H , ffnewx1 , fxg, fnewx2 , fxgg)H'  
on
atenate(H , ffnewx1 , fxg, fnewx2 , fxgg)if (length(H' ) > maxPts) thenre
enter  trueif (re
enter) thensort pairs in H in as
ending order of k�rst(pair)� 
enterkH'  up to �rst minPts pairs of H
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h entry in the table of results (Table 2.6) shows the numberof su

essful trials (upper left) and the average number of fun
tion evaluations forsu
h trials (lower right).RAST HUMP G-P GW1 GW100 SWISSAMEBSA 16 100 90 100 0 10039 40 222 86 N/A 1340ASA 100 100 100 100 2 100404 225 1042 197 6003 903SALO 100 100 100 100 95 100585 65 97 85 4501 163LMLSL 100 100 100 100 50 100847 105 118 96 4508 187RANDLO 100 100 100 100 58 100706 70 96 85 4008 146MLLO-IQ 100 100 100 100 57 100286 71 97 83 4493 157MLLO-RIQ 100 100 100 100 46 100161 57 92 83 4536 148Table 2.6: Su

essful global optimization trials and average fun
tion evaluationsBoth MLLO-IQ and MLLO-RIQ perform very well in general. What is most in-stru
tive from these results are the 
ases where the strengths and weaknesses ofthese methods are most prominently displayed. Let us �rst 
onsider RAST, the Ras-trigin fun
tion. RAST is a 2-D, sinusoidally-modulated, shallow paraboloid with 49lo
al minima within the sear
h bounds. The quasi-Newton lo
al optimization layer ofMLLO-IQ and MLLO-RIQ e�e
tively transforms this obje
tive fun
tion f into f 0, a shal-low paraboloid of plateaux. MLLO-IQ's global information-based sear
h of f 0 �nds thelowest plateau very qui
kly, and the lo
al information-based sear
h of MLLO-RIQ doesa fo
used des
ent whi
h leads it to the global minimum with even greater eÆ
ien
y.This suggests that these sear
hes are parti
ularly well-suited to global optimizationof fun
tions with a moderate number of lo
al minima. For fun
tions with fewer lo
alminima (HUMP, G-P, and GW1), there is little to be gained by su
h extra 
omputation.Random lo
al optimization (RANDLO) will suÆ
e.Now let us 
onsider the weaknesses of these methods shown in failed 
ases withGW100. Indeed the performan
e of these methods is worse than random lo
al opti-mization. Why? GW100 is a 6-D, sinusoidally-modulated, shallow paraboloid with
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al minima. For this fun
tion, our quasi-Newton lo
al optimizationexhibits interesting and unexpe
ted behavior: In all but the lowest points of thesurfa
e, lo
al optimization most often leads to lo
al minima that are far from thosenearby the initial point. In this example, we are reminded that \lo
al" in \lo
aloptimization" refers to properties of the optimum itself and not the \nearness" ofthe optimum lo
ation. Without su
h nearness, the sear
h lands
ape is not simplytransformed into a lands
ape of plateaux. Our quasi-Newton lo
al optimization didnot optimize to near minima, and so 
reated a lands
ape whi
h was not suited forinformation-based global optimization.MLLO-RIQ also has diÆ
ulty with GW100, but for di�erent reasons. After qui
kly�nding the region 
ontaining the global minimum, the method spends mu
h of theremainder of its sear
h e�ort �rst sear
hing many points mutually far apart near theboundary of the 6-D hypersphere. Perhaps randomly sampling f or f 0 within thesear
h hypersphere might en
ourage 
onvergen
e. SALO remains our best option forfun
tions with a large number of lo
al minima.While these fun
tions may give a general indi
ation of the relative strengths ofthese methods (without tuning), the fun
tions share a 
ommon property undesirablefor our purposes: The un
onstrained global minimum is never lo
ated at or beyond thebounds of the sear
h spa
e. Therefore, our optimization methods need not performwell along the bounds of our sear
h spa
e. It is for this reason that un
onstrainedquasi-Newton lo
al optimization was suitable for use with su
h global optimizations.We used this as an opportunity to try two 
onstrained LO pro
edures CONSTR andYURETMIN for the stepper motor test problems STEP1 and STEP2. (See Figures 2.2and 2.3.) For this testing, we performed 10 trials to �nd a fun
tion value of 0 with amaximum of 1000 fun
tion evaluations per trial. The results appear in Table 2.7.These results were very pleasing. MLLO-IQ is the �rst te
hnique we have observedthat has su

eeded in every STEP1 and STEP2 trial. It does so with ex
ellent eÆ
ien
yas well. Sin
e the de
ision pro
edure 
omputation time was also dominated by sim-ulation time, it was also easily the fastest algorithm for these trials. MLLO-RIQ didsurprisingly well 
onsidering that most of the sear
h spa
e of these fun
tions slopesdownward and away from the 
orner of the spa
e where the rare failure 
ases o

ur.



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 44STEP1 STEP2ASA 0 2N/A 497SALO 10 580 202LMLSL 10 10163 137RANDLO 10 1078 359MONTE 0 6N/A 469MLLO-IQ 10 1046 219MLLO-RIQ 10 860 330(a) CONSTR

STEP1 STEP2ASA 0 2N/A 497SALO 7 9387 198LMLSL 3 10389 169RANDLO 9 10501 172MONTE 0 6N/A 469MLLO-IQ 10 10108 109MLLO-RIQ 8 9301 239(b) YURETMINTable 2.7: Results for STEP1 and STEP22.9 Con
lusionsA powerful approa
h to initial safety veri�
ation is to transform the problem into anoptimization problem and leverage the power of eÆ
ient optimization methods. Thisis a

omplished by� providing a good heuristi
 evaluation fun
tion f ,� 
hoosing an eÆ
ient lo
al optimization pro
edure well suited to f , and� applying a global optimization pro
edure for whi
h one's lo
al optimizationpro
edure is well suited.While no global optimization pro
edure in our studies was generally dominant,we note that random lo
al optimization seems best suited for heuristi
 fun
tions withfew minima, SALO[10℄ seems best suited for heuristi
 fun
tions with very many lo
alminima, and MLLO-IQ and MLLO-RIQ seem best suited for heuristi
 fun
tions with amoderate number of lo
al minima. MLLO-IQ is better suited for problems where theglobal minima are expe
ted to o

ur at parameter extremes, whereas MLLO-RIQ is



CHAPTER 2. HEURISTIC OPTIMIZATION FOR SAFETY REFUTATION 45better suited to low-dimensional problems where global minima are found within thespa
e. Our de
ision pro
edure approximates an optimal sequen
e of trials over the
lass of 
ontinuous heuristi
 fun
tions for whi
h lesser lo
al Lips
hitz 
onstants aremore likely. Furthermore, we have empiri
ally demonstrated their e�e
tive use withfun
tions having many dis
ontinuities in the 
ontext of multi-level lo
al optimization.Finally, we note that the 
omputational e�ort invested toward eÆ
ient optimiza-tion should be 
ompensated for by redu
ed overall runtime. For our problem, the
omputational expense of our simulation justi�ed su
h e�ort. But what of initialsafety problems for whi
h simulation requires less runtime? Setting maxpts = 0 forAlgorithm 17 yields random lo
al optimization. As maxpts ! 1, our de
isions ap-proa
h optimality and the de
ision-making e�ort ex
eeds the sear
h e�ort it saves.Where is the happy medium in this tradeo�? In future resear
h, we hope to investigatemeans of dynami
ally adjusting the level of strategi
 e�ort of su
h information-basedalgorithms in order to address a larger 
lass of problems eÆ
iently.

7Algorithm 1 is 
alled by Algorithm 3.



Chapter 3SASAT Game-Tree Sear
hExtending dis
rete game-tree sear
h to hybrid system game-tree sear
h introdu
estwo new de
isions in optimization: a
tion dis
retization and a
tion timing dis
retiza-tion. These 
orrespond to the de
isions of how to a
t and when to a
t. When adis
retization is supplied to the sear
h algorithm, we 
all it a \stati
" dis
retization,i.e. the sear
h algorithm 
annot a�e
t the dis
retization 
hoi
e. We 
all su
h a sear
ha \SASAT Sear
h", as it has both Stati
 A
tion and Stati
 A
tion Timing dis
retiza-tions. A SASAT sear
h is essentially a dis
rete sear
h applied to a hybrid or pie
ewise
ontinuous system. Thus, we 
an bene�t dire
tly from AI dis
rete game-tree sear
hte
hniques.In this 
hapter, we will formally de�ne a SASAT Hybrid System Game and itssolitaire 
ase, a SASAT Hybrid System Sear
h Problem. A magneti
 levitation 
on-trol problem is introdu
ed, and we show how the 
ontrol problem may be posed asa game to a
hieve robust 
ontrol. We then examine three ways of using simulationand game-tree sear
h to inform robust 
ontrol of a magneti
 levitation 
ontroller. Inthe �rst, we present a dynami
-programming approa
h with an augmented 
ell-mapor game-graph. Next, we dis
uss 
urrent te
hniques for alpha-beta sear
h (with-out approximation) and show the similarity of the resulting 
ontrol poli
y of bothapproa
hes.Combining the best of both algorithms, we present a synthesis 
alled Game-GraphAlpha-Beta, whi
h has a novel form of 
a
hing results of alpha-beta sear
h for future46



CHAPTER 3. SASAT GAME-TREE SEARCH 47reuse. This synthesis provides a more eÆ
ient means of online hybrid system 
ontrolfor low-dimensional state spa
es, assuming that a good dis
retization 
an be found.We 
on
lude with a summary and dis
ussion of future dire
tions.3.1 SASATHybrid SystemGame and Sear
h Prob-lemFormally, a SASAT Hybrid System Game is de�ned as a 7-tuplefS; s0; A; p; l;m; dgwhere� S is the hybrid state spa
e with a �nite number of �nite dis
rete variable do-mains, and a �nite-dimensional 
ontinuous spa
e,� s0 2 S is the initial state,� A is the �nite dis
rete a
tion spa
e,� p is the number of players,� l : S � f1; : : : ; pg ! fa1; : : : ; ang 2 A is a legal move fun
tion mapping from astate and player number to a �nite set of legal a
tions that may be exe
uted inthat state by that player,� m : S�Ap ! S�<p is a move fun
tion mapping from a state and simultaneousplayer a
tions to a resulting state and the utility of the 
ombined a
tions forea
h player,� d : S ! S � <p is a delay fun
tion mapping from a state to the resulting stateand the utility of the traje
tory segment for ea
h player. This delay governsthe evolution of the system through time between moves.



CHAPTER 3. SASAT GAME-TREE SEARCH 48The total utility of any �nite traje
tory is 
omputed as the sum of the traje
-tory move and delay utilities. In this time-invariant formalism, time 
an easily been
oded in a 
ontinuous 
lo
k variable, and time invariant behavior 
ould thus beeasily a
hieved.Although not addressed in this 
hapter, a SASAT Hybrid System Sear
h Problemis a spe
ial 
ase of the SASAT Hybrid System Game where we are interested in �ndinga traje
tory from the initial state to a goal state. Usually su
h problems are statedin terms of path 
ost rather than utility. Formally, a SASAT Hybrid System Sear
hProblem is de�ned as a 7-tuple fS; s0; Sg; A; l;m; dgwhere� S is a hybrid state spa
e with a �nite number of �nite dis
rete variable domains,and a �nite-dimensional 
ontinuous spa
e,� s0 2 S is an initial state,� Sg � S is a set of goal states,� A is a �nite dis
rete a
tion spa
e,� l : S ! fa1; : : : ; ang 2 A is a legal move fun
tion mapping from a state to a�nite set of legal a
tions that may be exe
uted in that state,� m : S � A ! S � < is a move fun
tion mapping from a state and a
tion to aresulting state and 
ost of the a
tion,� d : S ! S � <p is a delay fun
tion mapping from a state to the resulting stateand the 
ost of the traje
tory segment for ea
h player. This delay governs theevolution of the system through time between moves.We next des
ribe a SASAT Hybrid System Game in the domain of magneti
levitation.
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Figure 3.1: S
hemati
 of magneti
 levitation system. Courtesy of Feng Zhao: phase-spa
e based magneti
 levitation 
ontrol experiment
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Figure 3.2: Blo
k diagram of magneti
 levitation system operation. Courtesy of FengZhao: phase-spa
e based magneti
 levitation 
ontrol experiment3.2 Magneti
 Levitation ProblemWe seek to use simulation and game-theoreti
 te
hniques to design a safe 
ontrolpoli
y for the magneti
 levitation (maglev) system of [55, 28℄ in whi
h the goal isto suspend a metal ball beneath an ele
tromagnet. This nonlinear, unstable sys-tem requires an a
tive 
ontroller for stabilization, and is representative of magneti
levitation systems found on high-speed transportation systems su
h as the GermanTransrapid system. The s
hemati
 for Zhao's maglev system is given in Figure 3.1.Figure 3.2 shows a blo
k diagram of maglev system operation. The system state isestimated from photosensors and sampled at a rate of about 5000Hz. The 
ontrollermaps system state to the 
ontrol power output whi
h a�e
ts the ele
tromagneti
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oil 
urrent. This in turn a�e
ts the system state, so this is a 
losed loop system.System state in
ludes the distan
e x and velo
ity v from the ele
tromagneti
 solenoiddownward to the ball, and the 
oil 
urrent i. The di�erential equations des
ribingthe dynami
s of this system are8<: dxdt = vdvdt = g � L0x0I22mx2where� g = 9:81m=s2 is gravitational a

eleration,� L0 = 0:00802H is the solenoid-ball system indu
tan
e at equilibrium,� x0 = 0:0116m is the desired verti
al gap between solenoid and ball,� I is the 
oil 
urrent 
ontrol parameter, and� m = 0:008432Kg is the ball mass.We take a game-theoreti
 approa
h for the purpose of synthesizing safe maglev
ontrol in the fa
e of external perturbation and error introdu
ed through modelingapproximations and numeri
al simulation. The problem is thus des
ribed as a gamewhere the 
ontroller may 
hange the magneti
 
oil 
urrent while the adversary mayperturb the behavior of the system in the period between 
ontroller a
tions. Spe
if-i
ally, using a �fth-order Cash-Karp Runge-Kutta method to simulate x and v over0.01 se
 to x0 and v0 within the region 0:005m � x � 0:018m, �0:3m=s � v � 0:3m=s,and 0:03A � I � 0:83A, the adversary may introdu
e relative error of at most 10%.Sin
e we assume that a
tions are dis
retized, we 
onstrain the 
ontroller to a uniformdis
retization of 20 
urrents from 0.03A to 0.83A, and we 
onstrain the adversaryto 8 perturbations of 10% in uniformly-distributed dire
tions in the position-velo
ityplane of the state spa
e.
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 Programming Game-GraphMethodCell mapping methods [20℄ have been used to perform state-spa
e analysis of dy-nami
al systems. In su
h methods the state-spa
e is divided into 
ells. Ea
h 
ell ismapped to another 
ell to whi
h it will evolve after a �xed time interval. The resultinggraph approximation of the system dynami
s is then analyzed. One advantage of 
ellmapping is that one 
an form an approximation of the state spa
e a

ording to 
om-putational spa
e limits, and perform an eÆ
ient, polynomial-time, global state-spa
eanalysis.Dynami
 programming, 
ell-mapping te
hniques for 
omputing optimal 
ontroldate ba
k to the work of Wang[53℄ for systems des
ribed by �rst-order ordinary dif-ferential equations. For ea
h quantized 
ontrol ve
tor, di�erential equations spe
ifya dire
tional �eld whi
h 
an be dis
retized and used to 
ompute 
ell-map transitions.Wang used a dynami
 programming approa
h for the 
omputation of optimal 
ontrolpoli
ies. In this 
hapter, we augment his te
hnique for multiple players, taking a moregeneral simulation-based approa
h to 
ell-map dis
retization, and allowing for bothdis
rete and 
ontinuous transition utilities.In seeking to extend su
h methods to n-player games, we augment the 
ell mapwith set-valued mappings from a f
ell, playerg pair to a set of 
ells, 
ir
ums
ribingthe possible e�e
ts of a player's a
tions in that 
ell. For ea
h player, ea
h 
ell is nowmapped to a set of 
ells to whi
h it may evolve after a �xed time interval. We referto this augmented 
ell-map as a game-graph. Rather than performing minimax on atree, we perform minimax on the approximating game-graph instead, thus redu
ingthe exponential 
omplexity of a minimax tree sear
h to the polynomial 
omplexityof a minimax graph sear
h. Our generalization of minimax for n-players follows [27℄where ea
h player seeks to maximize its 
omponent of a s
ore ve
tor.Algorithm 6 is the 
ore pro
edure for our dynami
 programming game-graphmethod. Following initialization, this pro
edure is iterated on the game-graph in
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 Programming Game-Graph MethodDynami
ProgrammingIteration(gameGraph, player). Input: game-graph (augmented 
ell-map),
urrent player number.Output: game-graph with s
ores updated for one level of sear
hforea
h 
ell in gameGraph do
ell.newS
oreVe
tor  negativeIn�nityVe
torforea
h destCell in 
ell.playerMap[player℄ donewS
oreVe
tor  moveS
ore(
ell , player , destCell) + destCell.s
oreVe
torif (newS
oreVe
tor[player℄ > 
ell.newS
oreVe
tor[player℄) then
ell.newS
oreVe
tor  newS
oreVe
torforea
h 
ell in gameGraph do
ell.s
oreVe
tor  
ell.newS
oreVe
torreturn gameGraphreverse turn order in the dynami
 programming style1. To initialize, �rst zero thegame-graph s
ore ve
tors. Then initialize the individual set-valued player maps whi
hindi
ate the possible a
tions of ea
h player at ea
h 
ell. In applying this method tothe maglev problem, the 
ontroller player map maps ea
h 
ell to all other 
ells thatdi�er only in 
ontroller input (
urrent). The adversary player map maps ea
h 
ellto the set of 
ells possibly rea
hable during the 
ontinuous system evolution phase,taking into a

ount perturbation and error.Sin
e players need not ne
essarily alternate turns, let us for ease of analysis de�neb as the e�e
tive bran
hing fa
tor of the player mappings as used over su

essive 
allsto Algorithm 6. Let 
 be the number of 
ells and p be the number of players. Thenthe time and spa
e 
omplexity of Algorithm 6 are O(
b) and O(
pb), respe
tively.With player maps 
ompa
tly represented and/or 
onservatively approximated, thespa
e 
omplexity may be redu
ed to O(
p).What we have not �gured into this analysis is the \
urse of dimensionality" inthe state-spa
e. If we divide a state-spa
e into a uniform grid of 
ells, the number of
ells will grow exponentially with the dimension of the spa
e. Thus this method isonly appli
able to systems with low-dimensional state-spa
es.1Evaluation takes pla
e from terminal states at some time horizon ba
kwards in time throughde
ision stages.
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es the burden of 
ell-partitioning and time dis
retization onthe user. Too 
oarse a 
ell-partition, and su
h 
omputation yields little information.Too �ne a partition, and we violate 
omputational spa
e 
onstraints. While adaptivete
hniques for 
ell-de
omposition are being developed [4℄, these dis
retization issuesare far from resolved.The granularity of the 
ell-partition di
tates the granularity of the approximated
ontrol poli
y. For our maglev problem, it would be desirable to have a �ner dis-
retization of the state spa
e 
lose to the desired goal state. Given that the goalstate is a single point in the spa
e, we might use some distan
e measure from thispoint to perform variable-size partitioning of the state spa
e. We have not exploreddomain-spe
i�
 improvements in this resear
h in the interest of generality, and su
hdomain-spe
i�
 improvements are left as open problems.The size of a simulation time-step used to build the augmented 
ell-map is anotherburden on the user. If too large a time-step is 
hosen in sampling behavior, theremay be a number of undesirable 
onsequen
es. A 
oarse sampling 
an result in anuninformative and unhelpful mapping. In skipping over too many 
ells, single limit
y
les may appear to be multiple limit 
y
les, obs
uring underlying system dynami
s.Also, a system that may be stabilized when sampled above a 
ertain rate may notbe stabilizable below that rate. A 
oarse sampling 
an also result in an undesirablyina

urate mapping as simulation numeri
al errors 
an 
ompound exponentially withsimulation time. In 
hoosing a small enough time step to avoid these problem, onemust be 
areful not to pi
k so small a time step that 
ells that a
tually evolve toother 
ells begin mapping only to themselves. For further dis
ussion of sample ratesele
tion issues, see [12, Ch. 11℄.One assumption of these te
hniques is that ea
h su

essive layer of a tree or graph
ontains nodes that all o

ur at the same time. Sear
h to a given depth is sear
h toa given time horizon. If adaptive dis
retization te
hniques were to be applied to the
hoi
e of time-steps, then we would need to deal with evaluation of a tree withoutuniform time horizons.We note that this method is not suited for real-time online use. While su
h amethod 
ould be used o�ine to form a 
ontrol poli
y a priori, it is not designed
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us on an immediately relevant 
ontrol de
ision. Rather, its 
omputation is dis-tributed a
ross the entire game-graph. This limitation is addressed in the graph-basednegamax Algorithm 7. Negamax is an equivalent, alternate representation of mini-max for two-player zero-sum games, where ea
h player seeks a path that maximizesthe negated return values of the next deeper level of sear
h.Algorithm 7 Negamax on a Game-GraphtbhGame-Graph-Negamax(node, player , depth). Input: 
urrent node (or 
ell) of game-graph (augmented 
ell-map),
urrent player number,depth of sear
h at node.Output: s
ore returned by sear
hif (depth = 0 or leafNode(node) or node.
omplete[depth℄[player℄) thenreturn node.s
oreVe
tor[depth℄[player℄nextPlayer  (player + 1) mod 2bestNode  nullbestS
ore  �1forea
h destNode in node.playerMap[player℄ dos
ore  moveS
ore(node, player , destNode)+� Game-Graph-Negamax(destNode, nextPlayer , depth)if (bestNode = null or s
ore > bestS
ore) thenbestNode  destNodebestS
ore  s
oreatomi
:node.s
oreVe
tor[depth℄[player℄  bestS
orenode.bestNode[depth℄[player℄  bestNodenode.
omplete[depth℄[player℄  truereturn bestS
oreAs input, Algorithm 7 takes the 
urrent node, player, and depth of the sear
hbelow the 
urrent node. As output, it returns the value of the subtree of the givendepth at the given node for the given player. This algorithm 
ould be used in real-time as an interruptible anytime algorithm that is 
alled with sequentially greaterdepths as time remains. Over time, as more and more sear
h results are 
a
hed, thealgorithm is able to reuse these results to a
hieve deeper sear
h over time. Memorywould be preallo
ated and a depth limit set. As sear
hes be
ome 
omplete to thegiven depth limit, sear
h 
an be dire
ted to other areas of the state spa
e.In summary, the dynami
 programming game-graph method has polynomial time
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e 
omplexity and is appli
able to o�ine 
ontrol design for low-dimensionalstate spa
es, assuming that a good dis
retization 
an be found. For real-time appli-
ations, one would want to fo
us sear
h relevant to the 
urrent situation. For su
ha situation, we des
ribe a simple means of 
a
hing results from iteratively deepeningnegamax sear
hes. We now turn our attention to the generalized hybrid alpha-betamethods in order to explore an even greater fo
using of sear
h along relevant lines ofgame-play.3.4 SASATGeneralized Hybrid Alpha-Beta MethodIn minimax sear
h, a game-tree is generated with two players MAX and MIN, al-ternately maximizing and minimizing the s
ore at alternating depths of the tree.However, mu
h of the tree need not be generated (i.e. it 
an be \pruned") sin
e it isprovably irrelevant given information gained during sear
h.The origin of alpha-beta pruning is not 
lear. The following a

ounts of its earlyhistory are taken from Nils Nilsson [34, pp. 151-152℄ and Judea Pearl [35, p. 286℄.Nilsson 
laims that alpha-beta pruning is \usually thought to be a rather obviouselaboration of the minimaxing te
hnique" and 
onje
tures that many people \dis
ov-ered" it independently. Pearl 
laims that John M
Carthy was the �rst to \re
ognizethe potential for alpha-beta-type pruning" in 1956 and 
oined the name \alpha-beta".Nilsson points to an arti
le by Newell, Shaw, and Simon [33℄ as the �rst des
riptionof alpha-beta, whereas Pearl points to a memorandum of M
Carthy's students Hartand Edwards [14℄ whi
h in
ludes des
ription of \deep 
uto�s". Pearl notes that the1958 
hess-playing program of Newell, Shaw, and Simon (and probably the 1959
he
ker-playing program of Samuel) used only shallow 
uto�s. Pearl 
laims that afull des
ription of the algorithm with deep 
uto�s was not published until Slagle andDixon in 1969 [45℄. Nilsson additionally points to Samuel's se
ond 
he
kers paper [43℄.The 
ore idea is this: If, in evaluating a node of a game tree, one 
an prove thata rational player will not 
hoose the path to that node, one 
an avoid examinationof (i.e. \prune") the subtree rooted at that node. By simple dynami
 bookkeepingof the best s
ore that ea
h player 
an a
hieve, asymptoti
 optimality is gained for
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h sear
hes. In [23℄, it was shown that the asymptoti
 bran
hing fa
tor of sear
h isb= log b, where b is the e�e
tive bran
hing fa
tor without pruning. Thus, the asymp-toti
 time 
omplexity of alpha-beta sear
h is O((b= log b)d), where d is the sear
hdepth.A re
ent des
ription of alpha-beta sear
h 
an be found in [41℄. Alpha-beta sear
hwas generalized to n-players by Ri
hard Korf in [24℄. Korf proved that if one assumesan upper bound on the sum of player s
ores and a lower bound on ea
h individuals
ore, then deep pruning 
annot o

ur for n > 2. Deep pruning of a node is based ona s
oring bound inherited from a great-grandparent or more distant an
estor2. Onlyshallow pruning is possible for n > 2. In the best-
ase, shallow pruning redu
es theasymptoti
 bran
hing fa
tor to (1 +p4b� 3)=2. However, shallow pruning does notredu
e the asymptoti
 bran
hing fa
tor. Thus we fo
us our attention on two-playeralpha-beta sear
h, noting that it 
an be generalized for n-players.The zero-sum algebrai
 
onstraint over the s
ores provides the rational basis foralpha-beta pruning, but what if the game is not zero-sum? Interestingly, knowledge ofone's problem domain may provide even more useful 
onstraints. If it 
an be provedthat one player will 
hoose a move in a state that is guaranteed to 
ause anotherplayer to pre
lude the possibility of rea
hing that state out of preferen
e for anotherline of play, all sear
h beyond that state may be pruned. For instan
e, 
onsider a
ooperative form of the air
raft 
ollision avoidan
e problem of [52℄, where all s
oresare identi
ally the minimum distan
e between any two air
raft over time. On
e allair
raft are re
eding from one another, we may obviously 
on
lude that the s
oreswill remain �xed. This is an example of a 
onstraint on future s
ores whi
h enablespruning without ever rea
hing 
uto� states. Pruning 
onstraints may take on otherforms as well. If, for instan
e, it 
an be proved that the best adversarial maglevperturbation is a maximal perturbation, we redu
e the dimensionality of relevantadversary a
tions. In broadening the 
onstraints one 
onsiders, one may introdu
efar more signi�
ant forms of pruning to minimax sear
h.2That is, three or more nodes towards the root.
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ontrol, su
h an algorithm 
ould be used within an iterative deep-ening, or iterative re�nement anytime algorithm. By iterative re�nement, we meanthat we start with a 
oarse dis
retization of player de
ision points and 
ompute anapproximate solution (re
ommended 
ontrol a
tion) with our hybrid alpha-beta algo-rithm. We store the a
tion, re�ne our dis
retization (i.e. allow more frequent turns),and iterate, 
omputing su

essively better approximate solutions until the algorithmis halted and the stored a
tion is returned. See Chapter 5 for a des
ription of severaliterative re�nement approa
hes.Although this approa
h does not require dis
retization of the state-spa
e, theuser still has to supply dis
retizations of 
ontinuous ranges of a
tions and de
isiontimes. Possible ways of dynami
ally 
hoosing su
h dis
retizations are investigated inall 
hapters that follow.One limitation of this approa
h is one shared by all tree-based methods: Highbran
hing fa
tors qui
kly for
e shallow sear
h. Sin
e we are dealing with a minimaxsear
h on a tree rather than a graph, the time 
omplexity is O(bd), where b is thee�e
tive bran
hing fa
tor and d is the maximum sear
h depth. However, the spa
e
omplexity is O(d), so we have signi�
antly traded o� time for spa
e. We have notonly under-utilized 
omputational spa
e resour
es, but we have saved no informationfor future use and 
annot expe
t sear
h performan
e to improve over time. Giventhe in�nite state-spa
e of the sear
h, and the approximate nature of simulation, itwould make sense to use approximation and/or abstra
tion in order to a
hieve betterperforman
e over time. One possible step in this dire
tion is to use alpha-beta withiterative deepening on a game-graph, 
a
hing results of partial alpha-beta 
omputa-tions in order to speed-up future minimax sear
hes and allow greater depth of sear
hover time. We introdu
e this new synthesis of te
hniques in Se
tion 3.6.3.5 Experimental ResultsWe have performed experimentation with the dynami
 programming game-graphmethod and the alpha-beta pruning method. In both 
ases, the results were qualita-tively 
omparable to those of Zhao[55, 28℄.
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 programming game-graph method, we 
hose to dis
retize theposition, velo
ity, and output 
urrent to a 20 � 20 � 20 uniform grid within thebounds given earlier. The 
ontroller takes a turn every 0.01 se
. These dis
retization
hoi
es were arbitrary. We have not experimented with other dis
retizations to seehow performan
e would be a�e
ted.Figures 3.3{3.6 show the mapping from input state x, v to output 
urrent Ifor the dynami
 programming game-graph method iterated to depth 2, 4, 6, and8. Figures 3.7{3.10 show traje
tories from these respe
tive 
ontrol poli
ies. As one
an see, the depth 2 mapping gives the general qualitative behavior desired, and thedepth 4 mapping is very similar to those for depth 6 and 8. For this problem, behaviorappears to 
onverge qui
kly in a few iterations, so it seems fortunate to have 
hosensu
h a time interval in our dis
retization. It would be interesting to experiment withadaptive step sizing for this method.To apply the resulting poli
y to a 
ontroller, we simply perform a nearest-neighbormapping at ea
h time interval. Ea
h input state is mapped to its 
orresponding 
ell,and the 
ell is mapped to an output 
urrent. The 
urrent is maintained for the nexttime interval3, and the pro
ess is repeated inde�nitely.The front and ba
k 
orners of these �gures are losing 
ells (i.e. states from whi
hthe 
ontroller is guaranteed to lose), so 0.03A output 
urrent is as good as any other.However, not all 0.03A 
urrent 
ell outputs indi
ate a losing 
ell. Figures 3.11 and3.12 indi
ate the 
ell s
ores for di�erent 
ells. Sin
e we have given 
ells that leadoutside the game-graph bounds an arbitrary large negative s
ore, these �gures mainlydi�erentiate between winning and losing states, that is, those states that 
an be keptwithin the game-graph region and those that 
annot.All states kept within the game-graph region are guaranteed to evolve to a smallsubset of 
ells about the desired 
ell. In pra
ti
e, one 
ould bring the system tothe exa
t desired equilibrium state by swit
hing to a 
ontrol law derived by small-signal linearization as soon as the state 
ame within a neighboring region about the3This is 
alled a zero-order hold in 
ontrol terminology.
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h there exists a positive de�nite Lyapunov fun
tion4. Small-signal linearization of a magneti
 levitation 
ontroller is demonstrated in [11, x 2.6.1℄.The alpha-beta method did not, of 
ourse, need to be generalized to n-players forthis problem domain. Our experimentation with it provided two signi�
ant pie
es ofinformation: (1) Memory allo
ation issues are signi�
ant to the eÆ
ien
y of real-timeappli
ations. In 
omparing two implementations with di�erent memory management,we found that preallo
ating memory and managing it was signi�
antly faster thanthe allo
ating and deallo
ating memory through normal means. (2) The state-spa
edis
retization we used to approximate maglev system dynami
s for the dynami
 pro-gramming game-graph method did not signi�
antly degrade performan
e, that is, we
hose a good approximation earlier. While there may be analyti
 means of derivingappropriate dis
retizations for simple dynami
al systems su
h as this, su
h 
hoi
es arenot obvious for 
omplex systems. Again, it would be interesting to resear
h adaptivedis
retization of the state spa
e, so that the designer need not simply guess at whatmight be 
orre
t for 
omplex systems.Sample traje
tories of the alpha-beta method 
an be seen in Figures 3.13{3.14.The arrows in the x-v plane are adversarial moves, while the verti
al arrows are instan-taneous 
ontroller 
urrent 
hanges. These mat
h up very ni
ely with Figures 3.3{3.4.Figures 3.15{3.16 show pie
ewise 
ontinuous traje
tory segments and more 
learlyillustrate the global dynami
s.3.6 SASAT Alpha-Beta on a Game GraphIn this se
tion, we introdu
e an algorithm for performing two-player alpha-beta on agame-graph. It 
ould be argued that alpha-beta has long sin
e been applied to dis
retegames with di�erent means of rea
hing the same states. However, this approa
h isdistin
tive for a 
ouple reasons.First, alpha-beta sear
h results are stored for ea
h sequential depth of sear
h pre-viously performed. In literature on transposition tables, we have not found methods4For an introdu
tion to stability in dynami
al systems, see [50, x 1.3℄.
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Figure 3.3: Maglev output 
urrents from the SASAT dynami
 programming game-graph method, depth 2
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Figure 3.4: Maglev output 
urrents from the SASAT dynami
 programming game-graph method, depth 4
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Figure 3.5: Maglev output 
urrents from the SASAT dynami
 programming game-graph method, depth 6
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Figure 3.6: Maglev output 
urrents from the SASAT dynami
 programming game-graph method, depth 8
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tories from the SASAT dynami
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Figure 3.9: Maglev traje
tories from the SASAT dynami
 programming game-graphmethod, depth 6
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 programming game-graphmethod, depth 8
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ores from the SASAT dynami
 programming game-graph method, depth 2
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Figure 3.13: Maglev traje
tories from the SASAT alpha-beta method, depth 2 (with
urrent 
hanges)
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Figure 3.15: Maglev traje
tories from the SASAT alpha-beta method, depth 2 (with-out 
urrent 
hanges)
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CHAPTER 3. SASAT GAME-TREE SEARCH 67that store more than the deepest sear
h performed at a node. Generally, appli
ationsof transposition tables are zero-sum games where players perform a sort of tug of wararound an even s
ore. In su
h a 
ase, a deeper sear
h will yield more useful infor-mation than a shallower sear
h, so it makes sense to only store the deepest sear
hperformed. Zero-sum games with monotoni
ally in
reasing/de
reasing s
ores are notserved well by su
h an approa
h. In this 
ase, sear
hes of equal depth should be
ompared at ea
h node. Comparing s
ores from sear
hes of di�erent depths wouldbias moves in poor dire
tions. Put simply, moves for su
h games should be evaluatedwith respe
t to a �xed time horizon.The se
ond distin
tive feature of this sear
h is our assumption that the entiregame-graph 
an be enumerated and stored in memory. This is unusual in that mostdis
rete games of interest to resear
hers do not have su
h small state spa
es.The pseudo
ode for our Game-Graph Alpha-Beta algorithm 
an be seen in Algo-rithm 8. Given a zero-sum game, one player (usually 
alled MAX) maximizes s
orewhile their adversary (usually 
alled MIN) minimizes s
ore. Rather than write twopro
edures for the two players, we again take a negamax approa
h.As input, Algorithm 8 takes the 
urrent node and player, s
ores for ea
h playerthat 
an be guaranteed a

ording to sear
h so far, and depth of the sear
h below the
urrent node. The guaranteed s
ores are a ve
tor (�, ��), where � is the lower boundand �� is the negated upper bound of relevant sear
h values at that node. As output,it returns the weakest pruning 
onditions used in the sear
h. This algorithm is used inreal-time as an interruptible anytime algorithm that is 
alled with sequentially greaterdepths as time remains. Over time, as more and more sear
h results are 
a
hed, thealgorithm is able to reuse these results to a
hieve deeper sear
h over time. Memorywould be preallo
ated and a depth limit set. As sear
hes be
ome 
omplete to thegiven depth limit, sear
h 
an be dire
ted to other areas of the state spa
e.The Game-Graph Alpha-Beta algorithm begins by 
he
king if (1) sear
h is at itsdepth limit, or (2) the 
urrent node is a leaf node. If so, a ve
tor of worst possibles
ores are returned, indi
ating that no pruning 
onditions were used from previoussear
h in sear
hing the subtree at that node. Re
all that both players are maximizingthe negated s
ores of the subtrees at ea
h level.
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Algorithm 8 Alpha-Beta on a Game-GraphGame-Graph-Alpha-Beta(node, player , prevGuaranteeVe
tor , depth). Input: 
urrent node (or 
ell) of game-graph (augmented 
ell-map),
urrent player number,guaranteed player s
ores from previous sear
h (�, ��),depth of sear
h at node.Output: weakest pruning 
onditions used in sear
hif (depth = 0 or leafNode(node)) thenreturn f�1;�1gif (prevGuaranteeVe
tor � node.pruneCondVe
tor[depth℄[player℄) thenreturn node.pruneCondVe
tor[depth℄[player℄otherPlayer  (player + 1) mod 2s
oreGuaranteeVe
tor  prevGuaranteeVe
torpruneCondVe
tor  f�1;�1gbestNode  nullbestS
ore  �1forea
h destNode in node.playerMap[player℄ do
hildPruneCondVe
tor  Game-Graph-Alpha-Beta(destNode, otherPlayer ,s
oreGuaranteeVe
tor,depth)pruneCondVe
tor  max(pruneCondVe
tor , 
hildPruneCondVe
tor)s  moveS
ore(node, player , destNode) +�destNode.abS
ore[depth℄[otherPlayer℄if (bestNode = null or s > bestS
ore) thenbestNode  destNodebestS
ore  sif (s � �prevGuaranteeVe
tor[otherPlayer℄) thenpruneCondVe
tor[otherPlayer℄  max(pruneCondVe
tor[otherPlayer℄ ,prevGuaranteeVe
tor[otherPlayer℄)goto pruneif (s > s
oreGuaranteeVe
tor[player℄) thens
oreGuaranteeVe
tor[player℄  sprune:if (s � pruneCondVe
tor[player℄) thenpruneCondVe
tor[player℄  �1atomi
:node.abS
ore[depth℄[player℄  bestS
orenode.bestNode[depth℄[player℄  bestNodenode.pruneCondVe
tor[depth℄[player℄  pruneCondVe
torreturn pruneCondVe
tor
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he
k the weakest pre
onditions of previous 
a
hed sear
h informationto see if the results 
an be reused. If so, we return those weakest pre
onditions. Theweakest pre
ondition for all sear
hes must be initialized to the best possible s
ores(1, 1) in order to ensure that an initial sear
h o

urs. When a sear
h is 
ompletedwithout relying on given s
ore guarantees for pruning, the weakest pruning 
onditionswill be (�1, �1). Hen
e that sear
h is 
omplete and stored results will always bereused.After initialization of a number of variables, we then turn our attention to ea
hpossible destination node for the player from the 
urrent node. For ea
h, we performa re
ursive 
all to Game-Graph Alpha-Beta, re
ord the strongest pruning 
onditionsused in the subtree sear
h, and re
ord the s
ore. If the s
ore is the best seen at thisnode, we note the new best s
ore and destination node. If the s
ore violates a zero-sum
onstraint with the guarantees, then we have proven that the rational adversary willnot allow the game to progress to this point and thus prune the remaining sear
hes,making note of the pruning 
ondition. Otherwise, we update the 
urrent player s
oreguarantee if ne
essary.After sear
hing destination nodes as ne
essary, we 
he
k if the 
urrent player'ssubtree sear
h s
ore satis�es the weakest pruning 
ondition for that player in thesubtree sear
h. If so, then no guarantees for the player's s
ore above the subtree werene
essary for the pruning, and we set the weakest pruning 
ondition for that playerto �1.Finally, we re
ord the results of the sear
h. This blo
k of 
ode is marked \atomi
"to indi
ate that interruption of the algorithm within this blo
k would potentially leavethe data in an erroneous state.One straightforward heuristi
 for speeding up su
h sear
h is to use the best nodeof previous sear
h (of similar depth) as the �rst node for exploration. By looking ata strong potential best move �rst, we are more likely to set tighter pruning boundsearlier in the sear
h.It should be noted that for a given node, player, and sear
h depth, su

essive
alls with overlapping bounds would result in a sear
h never being 
omplete. One
ould 
onstru
t pathologi
al global sear
h and 
alling 
onditions su
h that asymptoti




CHAPTER 3. SASAT GAME-TREE SEARCH 70global behavior over time would be better served by avoiding pruning altogether. Itis not 
lear how often su
h situations 
ould arise in pra
ti
e. In Chapter 4, we willsee that pruning 
an yield su
h signi�
ant sear
h speedup in this domain, so thateven without storage and reuse of sear
h results, alpha-beta pruning is well-appliedto this problem domain.3.7 Relation to Memory-Based Te
hniquesIn [32℄, Moore, Atkeson, and S
haal present a 
olle
tion of memory-based te
hniquesfor learning 
ontrol. Of parti
ular relevan
e to the work of this 
hapter is theirresear
h into optimal 
ontrol with nonlinear dynami
s and 
osts[32, x7℄. In thisse
tion, we give an overview of their memory-based approa
h, 
ompare and 
ontrastit with our own, and note possible dire
tions for future work.Developed independently, memory-based approa
hes expli
itly remember all pre-vious experien
es and apply su
h knowledge to the problem of learning 
ontrol. Pre-di
tion and generalization are performed online in real-time by building a lo
al modelto answer any query, where a query is a 
urrent state and desired resulting systembehavior, and an answer to a query is an a
tion mapping the 
urrent state to thedesired behavior. Although the idea is more general, stored experien
es are used tobuild lo
al models represented as polynomial approximations of system evolution.Parameters for the polynomial are estimated using linear weighted regression (LWR).Su
h te
hniques are said to provide expli
it parameters to 
ontrol smoothing, outlierreje
tion, and forgetting. The last pro
ess is parti
ularly important for the develop-ment of memory-bounded variants.Moore et al des
ribe system dynami
s as an unknown fun
tionx(t + 1) = f(x(t);u(t)) + noise(t)with a known 
ost fun
tion 
(t) = 
ost(x(t);u(t)):



CHAPTER 3. SASAT GAME-TREE SEARCH 71The task is minimization of one of the following 
ost summations:1Xt=0 
(t) or tmaxXt=0 
(t) or 1Xt=0 
t
(t) where 0 < 
 < 1 or limn!1 1n nXt=0 
(t)The authors note that there is a large literature on su
h problems in the 
ontext ofreinfor
ement learning. The state spa
e is dis
retized into a multidimensional arrayof 
ells, and system dynami
s are approximated to 
ell 
enters as with 
ell map meth-ods. They present the following basi
 approa
h, 
alled Memory-Based Reinfor
ementLearning whi
h uses a dynami
 programming value iteration to 
ompute an optimalvalue fun
tion:1. Observe the 
urrent state x(t) and 
hoose a
tion u = �(x), where � is the
urrent estimated optimal 
ontrol poli
y.2. Perform a
tion and observe next state x(t + 1).3. Add (x(t);u)! x(t+ 1) to the memory base.4. Re
ompute the optimal value fun
tion and poli
y using value iteration with thenew information.Value iteration is 
omputationally expensive, so this algorithmwould not be suitedto fast, real-time appli
ation. Experimentally, it was used with a simulated systemthat had its state frozen while updating its poli
y. The authors suggest that fornormal usage one would update the value fun
tion and poli
y at the end of ea
h trialor in an in
remental parallel pro
ess.Convergen
e of reinfor
ement learning is dependent on the system visiting ea
hstate-a
tion pair in�nitely often. Memory-based reinfor
ement learning does not prob-abilisti
ally explore as do most reinfor
ement learning algorithms. The result of thisla
k of exploration is that it 
onverges to 
orre
t behaviors faster when the learnedmodel does not 
ontain signi�
ant errors. The authors point out that signi�
ant noise
an introdu
e errors that steer the system in signi�
antly suboptimal dire
tions whilesu
h memory persists. Thus, the guarantee of 
onvergen
e to an optimal solution is
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onvergen
e to a solution, mu
h the same way that simulatedquen
hing does in the 
ontext of simulated annealing. In pra
ti
e, this 
an be quitesensible. In fa
t, simulated quen
hing with random restarts is in popular use amongthose who use simulated annealing. We suggest that one might 
ombine the result-ing poli
ies of multiple runs of memory-based reinfor
ement learning to synthesize apoli
y augmented with risk information.Two experiments were performed with a simple nonlinear dynami
al system in-volving the positioning of a pu
k on a 
urved one-dimensional surfa
e. In the �rstexperiment, unvisited states were assumed to have a 
ost of zero. In the se
ond exper-iment, transitions between 
ells were predi
ted using lo
ally weighted linear regressionfrom previous observations. The se
ond a
hieved behavior within 3% of optimal withtwo orders of magnitude fewer steps than in the �rst experiment.There are a number of similarities and di�eren
es between this approa
h and oursthat are worth noting. First, we note that the system model in
ludes noise and isnondeterministi
. Our approa
hes assume determinism. However, this di�eren
e isnot so signi�
ant when one 
onsiders that memory-based approa
hes treat systembehavior as deterministi
. In not visiting state-a
tion pairs in�nitely often, there isan underlying assumption that what has been observed need not be re-observed fordi�erent behavior. In this sense there is little di�eren
e between how information istreated in memory-based and simulation-based approa
hes. In 
ontrast, we 
hooseto treat nondeterminism pessimisti
ally. Rather than treating possible system per-turbations or errors as random, we imbue su
h behavior with intelligen
e and designfor the worst 
ase. Di�erent treatment of nondeterminism will be appropriate fordi�erent tasks. It would be interesting to see memory-based reinfor
ement learningmethods extended for Markov games and see how su
h approa
hes work in the 
ontextof multi-player games.The authors stress that memory-based approa
hes are model-free and only 
on-stru
t lo
al models of behavior as is ne
essary. Simulation-based te
hniques assumea simulatable model is given. This would again seem to be a signi�
ant di�eren
e.However, we note that memory-based experiments relied on the use of simulations.Modi�
ations to su
h approa
hes (e.g. that de
ide when to perform 
omputationally
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 programming) are ne
essary for physi
al experimental use. In ourSASAT work, we have fo
used on means of redu
ing the amount of and maximiz-ing the immediate utility of dynami
 programming 
omputation between ea
h a
tionin real-time. The algorithms des
ribed in [32, x7℄ are not so model-free as thosereferen
ed in the same se
tion. In pra
ti
e, the authors suggest that dynami
 pro-gramming should be performed at the end of ea
h trial, or as an in
remental parallelpro
ess.What is perhaps most valuable and instru
tive from their approa
h is the powerfuluse of predi
tion based on previous experien
e. Su
h predi
tive interpolation basedon previous experien
e 
ould potentially �nd powerful appli
ation in the alpha-betaapproa
hes of this 
hapter if storage, retrieval, and lo
al model 
onstru
tion did notintrodu
e too mu
h 
omputational overhead. For example, it is well known that nodeordering 
an signi�
antly in
rease pruning and thus the speed of alpha-beta sear
h.This will be seen experimentally in the next 
hapter. If su
h predi
tion 
an beeÆ
iently used for intelligent node-ordering, then our approa
h 
ould be signi�
antlyimproved.3.8 Summary and Dis
ussionIn this 
hapter, we examined three ways of using simulation and game-tree sear
hto inform robust 
ontrol of a magneti
 levitation 
ontroller. In the �rst, we useda dynami
-programming approa
h with an augmented 
ell-map or game-graph. Insear
hing a graph approximation of the dynami
 game, we redu
e sear
h time 
om-plexity from exponential to polynomial. Our dynami
 programming method for aug-mented 
ell maps has polynomial time and spa
e 
omplexity and is appli
able too�ine 
ontrol design for low-dimensional state spa
es, assuming that a good dis-
retization 
an be found.Next, we dis
ussed 
urrent te
hniques for alpha-beta sear
h (without approxima-tion) and showed that the resulting 
ontrol poli
y of earlier approximation is indeed
lose to that found using alpha-beta sear
h. Alpha-beta pruning is a form of ir-relevan
e reasoning whi
h in
reases eÆ
ien
y of minimax sear
h. We dis
ussed the



CHAPTER 3. SASAT GAME-TREE SEARCH 74history of alpha-beta and the reason why it is best applied to two-player games.Finally, we 
ombined the best of both algorithms in an algorithm 
alled Game-Graph Alpha-Beta, whi
h has a novel form of 
a
hing results of alpha-beta sear
h forfuture reuse. This provides a more eÆ
ient means of online hybrid system 
ontrol forlow-dimensional state spa
es, assuming that a good dis
retization 
an be found.From our experimental results we note that our 
hoi
e of dis
retization was for-tunate, as a depth-four (two turn) game-tree sear
h yields a 
ontrol poli
y nearly
onvergent with the optimal poli
y yielded by Algorithm 6 when iterated to 
onver-gen
e. As this was a

idental, we do believe that future work should be done todynami
ally adapt dis
retization stepsize. First steps in this dire
tion are made inthe 
ontext of tree-sear
h in Chapters 5 and 6.One might ask where su
h te
hniques are most usefully applied. First, we observethat sear
h is a 
omplex generalization of generate-and-test optimization. Global op-timization te
hniques of the previous 
hapter are most usefully applied to fun
tionsthat do not have properties assumed by more spe
ialized te
hniques that take advan-tage of su
h problem-domain-spe
i�
 knowledge. In the same way, game-tree or treesear
h te
hniques are most usefully applied to informing intelligent 
ontrol of systemsthat do not have properties assumed by the more spe
ialized te
hniques of 
lassi
al
ontrol.Se
ond, we note that many te
hniques of 
ontrol require the system to have aspe
i�
 analyti
al form. In 
ontrast to 
ontrol te
hniques su
h as feedba
k lineariza-tion, we do not 
onstrain our system to a spe
i�
 analyti
al form. For most of ouralgorithms, we assume that a system simulator is given. However, the augmented
ell-map te
hniques we have presented require only suÆ
ient time-series data to ap-proximate system dynami
s. Furthermore, in reviewing the memory-based 
ontrolwork of Moore, Atkeson, and S
haal, we note that simulation 
an be approximatedthrough the interpolation of time-series data. From this perspe
tive, our te
hniquesnot only enable model-based 
ontrol, but 
an also be applied without expli
it modelsgiven an appropriate means of interpolating unseen system behavior.
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on
erning minimax and alpha-beta motivate future resear
h in rea-soning about un
ertainty and relevan
e in game-tree sear
h. First, minimax sear
h as-sumes no un
ertainty in node evaluations, so small errors in node-evaluations may sig-ni�
antly misinform de
isions. Se
ond, alpha-beta pruning is 
on
erned entirely withprovable irrelevan
e given su
h an assumption. Without the ability to fo
us sear
hdire
tion a

ording to probable relevan
e to the root de
ision, alpha-beta sear
h isill-equipped to handle large bran
hing fa
tors, for
ing an arbitrary, pre-determinedpruning or dis
retization (for 
ontinuous ranges of a
tions). Automati
ally 
hoosingstate-spa
e or a
tion-spa
e dis
retizations a

ording to the task of real-time reasoningabout 
ontrol is an open problem. Even given a good dis
retization of a hybrid sys-tem 
ontrol game, a large bran
hing fa
tor 
an for
e an impra
ti
ally shallow sear
hand yield poor de
isions.Probabilisti
 game-playing methods [42℄ have been developed to handle un
er-tainty and to dire
t sear
h with relevan
e to maximizing expe
ted utility of the de-
ision. This still leaves overar
hing dis
retization questions 
on
erning 
ontinuousstate-spa
es, ranges of a
tions, and de
ision points in intervals of time. In future
hapters, we show that previous work on information-based optimization (Chapter 2)will be relevant in addressing su
h questions. Brie
y, information-based optimizationis 
on
erned with using the information from previously sampled points to inform the
hoi
e of future sample points. Using su
h optimization to dynami
ally 
hoose thesampling of a
tions and de
ision points provides an interesting study in the tradeo�between 
ost and bene�t of metalevel reasoning in sear
h.As algorithms employ in
reasingly 
omputationally 
omplex meta-level reasoning,
omputational overhead will grow to the point of diminishing returns in overall utility.Over time, we expe
t to develop a suite of methods that lie along a spe
trum of
omputational 
omplexities of meta-level reasoning, and des
ribe their appli
abilityto di�erent 
lasses of hybrid system 
ontrol games. We hope that these will 
ontributeto development of algorithms for real-time 
ontrol and bounded rationality.



Chapter 4DASAT Game-Tree Sear
hExtending dis
rete sear
h to hybrid system sear
h introdu
es two new de
isions inoptimization: a
tion dis
retization and a
tion timing dis
retization. In this 
hapterwe 
hoose to address the former de
ision: How 
ould a sear
h algorithm 
hoose how tobran
h the sear
h tree 
onsidering 
ontinuous spa
es of possible a
tions parameters?We will assume that a
tion timing, i.e. when de
isions are made, is already given.From the perspe
tive of the sear
h algorithm, a
tion dis
retizations are dynami
, i.e.a sample of possible a
tions for ea
h sear
h node is 
hosen by the sear
h algorithm.However, from the perspe
tive of the sear
h algorithm, a
tion timing dis
retizationsare stati
, i.e. the sear
h algorithm 
annot a�e
t the a
tion timing dis
retization.For this reason, we will 
all su
h sear
hes \DASAT sear
hes" as they have Dynami
A
tion and Stati
 A
tion Timing dis
retization.In this 
hapter, we formally de�ne a DASAT Hybrid System Game and its solitaire
ase, a DASAT Hybrid System Sear
h Problem. We 
ontinue to examine the magneti
levitation problem of the previous 
hapter, and 
ompare the relative merits of random,uniform, and information-based dis
retizations in the 
ontext of alpha-beta sear
h.We present information-based alpha-beta sear
h, a novel appli
ation of information-based optimization whi
h uses the � lower bound and � upper bound of alpha-betasear
h to optimize for pruning. The resulting algorithm ex
eeds the good speedand pruning performan
e of random dis
retization while mat
hing the 
ontrol poli
yquality of uniform dis
retization. 76



CHAPTER 4. DASAT GAME-TREE SEARCH 774.1 DASATHybrid SystemGame and Sear
h Prob-lemFormally, a DASAT Hybrid System Game is de�ned as a 7-tuplefS; s0;A; p; l;m; dgwhere� S is the hybrid state spa
e with a �nite number of �nite dis
rete variable do-mains, and a �nite-dimensional 
ontinuous spa
e,� s0 2 S is the initial state,� A is a �nite set fA1; : : : ; Ang of 
ontinuous a
tion regions indexed f1; : : : ; ng,� p is the number of players,� l : S � f1; : : : ; pg ! A0 where A0 � A is a legal move fun
tion mapping from astate and player number to a �nite set of legal 
ontinuous a
tion regions whi
h
ontain points representing all legal a
tions that may be exe
uted in that stateby that player,� m : S�ap ! S�<p is a move fun
tion mapping from a state and simultaneousplayer a
tions (region index, region point pairs) to a resulting state and theutility of the 
ombined a
tions for ea
h player,� d : S ! S � <p is a delay fun
tion mapping from a state to the resulting stateand the utility of the traje
tory segment for ea
h player. This delay governsthe evolution of the system through time between moves.The total utility of any �nite traje
tory is 
omputed as the sum of the traje
-tory move and delay utilities. In this time-invariant formalism, time 
an easily been
oded in a 
ontinuous 
lo
k variable, and time invariant behavior 
ould thus beeasily a
hieved.



CHAPTER 4. DASAT GAME-TREE SEARCH 78Although not addressed in this 
hapter, a DASAT Hybrid System Sear
h Problemis a spe
ial 
ase of the DASAT Hybrid System Game where we are interested in�nding a traje
tory from the initial state to a goal state. Usually su
h problems arestated in terms of path 
ost rather than utility. Formally, a DASAT Hybrid SystemSear
h Problem is de�ned as a 7-tuplefS; s0; Sg;A; l; m; dgwhere� S is a hybrid state spa
e with a �nite number of �nite dis
rete variable domains,and a �nite-dimensional 
ontinuous spa
e,� s0 2 S is an initial state,� Sg � S is a set of goal states,� A is a �nite set fA1; : : : ; Ang of 
ontinuous a
tion regions indexed f1; : : : ; ng,� l : S ! A0 where A0 � A is a legal move fun
tion mapping from a state to a�nite set of legal 
ontinuous a
tion regions whi
h 
ontain points representingall legal a
tions that may be exe
uted in that state,� m : S� a! S�< is a move fun
tion mapping from a state and a
tion (regionindex, region point pair) to a resulting state and 
ost of the a
tion,� d : S ! S � <p is a delay fun
tion mapping from a state to the resulting stateand the 
ost of the traje
tory segment for ea
h player. This delay governs theevolution of the system through time between moves.We next des
ribe a DASAT Hybrid System Game in the domain of magneti
levitation.



CHAPTER 4. DASAT GAME-TREE SEARCH 794.2 DASAT Magneti
 Levitation ProblemThe DASAT version of the SASAT Magneti
 Levitation Problem of Se
tion 3.2 isthe same with only one modi�
ation: a
tion dis
retizations are no longer given. Themagneti
 levitation unit 
an now 
hoose any 
urrent between 0.03A and 0.83A. Theadversary 
an now perturb the system 10% in any dire
tion in the position-velo
ityplane of the state spa
e.In this 
hapter, we fo
us solely on 
omparisons of dis
retization quality in the
ontext of alpha-beta sear
h. In all 
ases, we retain the same bran
hing fa
tors ofthe dis
retization of the previous 
hapter, thus fa
ilitating ease of 
omparison. Threedi�erent dis
retizations are studied: random, uniform, and information-based.4.3 DASAT Alpha-Beta Sear
h with Random Dis-
retizationDASAT Alpha-Beta Sear
h with Random Dis
retization is a simple augmentation ofSASAT Hybrid Alpha-Beta Sear
h (Se
tion 3.4) with moves being randomly 
hosenrather than given as a �xed dis
retization of possible a
tion parameter regions. Weglobally �x a maximum number of samples for ea
h a
tion parameter region. For ea
hre
ursive 
all of the algorithm for a node, samples are randomly 
hosen from a
tionparameter regions. For ea
h sampled move, a new 
hild (possible future node) isgenerated, re
ursively sear
hed, and results of the sear
h are returned. This 
ontinuesuntil either (1) we rea
h the maximum number of samples, or (2) the result of sear
hindi
ates that we 
an prune future sear
h from this node.Experimental results of DASAT Alpha-Beta Sear
h with Random Dis
retizationon the magneti
 levitation problem are shown in Table 4.1. Figures 4.1, 4.2, and 4.3show the 
ontrol poli
ies (mappings from position and velo
ity to 
urrent) resultingfrom sear
hes to depths 2, 4, and 6, respe
tively. From the 
ontrol poli
y, we seethat the outputs are rough. Results of the previous 
hapter indi
ate that mu
h ofthe 
ontrol poli
y spa
e should have 
urrents at extreme values. Given the randomnature of dis
retization, we only approximate su
h extreme values.
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Figure 4.1: Maglev output 
urrents from DASAT Alpha-Beta with Random Dis-
retization, depth 2
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Figure 4.2: Maglev output 
urrents from DASAT Alpha-Beta with Random Dis-
retization, depth 4
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Average Average Average Average AverageDepth Trials Time (mse
) Nodes P
t. Pruned Nodes/Se
 S
ore1 400 1 21 0.00 21,538 -1.59E-72 400 1 66 63.30 80,275 -1.59E-73 400 36 748 77.89 20,958 -3.43E-74 400 43 2,057 92.90 47,918 -3.42E-75 400 867 21,806 95.97 25,153 -5.73E-76 400 1,124 66,042 98.58 58,778 -5.70E-7Table 4.1: Results for DASAT Alpha-Beta Sear
h with Random Dis
retization

0.006
0.008

0.01
0.012

0.014
0.016

0.018

−0.2

−0.1

0

0.1

0.2

0.3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

position (m)velocity (m/s)

cu
rr

en
t (

A
)

Figure 4.3: Maglev output 
urrents from DASAT Alpha-Beta with Random Dis-
retization, depth 6



CHAPTER 4. DASAT GAME-TREE SEARCH 824.4 DASAT Alpha-Beta Sear
h with Uniform Dis-
retizationIn global optimization of Lips
hitzian fun
tions with an unknown 
onstant, it hasbeen shown that a uniform grid on a 
ompa
t feasible set provides the best sele
tionof 
andidate points for optimization[51℄. In a sense, this is mu
h like information-based optimization over a 
ompa
t feasible set where the fun
tions are �nite-valuedand the target is in�nite. In this extreme 
ase, ea
h next best 
andidate point is thepoint whi
h is farthest from all previously evaluated points. Thus, from two pointsof view, uniform dis
retization is the best approa
h to 
hoosing a set of points forevaluation when one la
ks information about a fun
tion extreme.DASAT Alpha-Beta Sear
h with Uniform Dis
retization is another simple aug-mentation of SASAT Hybrid Alpha-Beta Sear
h (Se
tion 3.4) with moves being uni-formly 
hosen rather than given as a �xed dis
retization of possible a
tion parameterregions. In fa
t, this yields the same dis
retization whi
h was used in the previous
hapter. A globally �xed maximum number of samples are uniformly 
hosen from thelower bound to the upper bound of a one-dimensional a
tion parameter region. Thegeneral 
ase of multidimensional, arbitrarily-shaped, 
losed regions is treated later inSe
tion 6.5. For ea
h a
tion region, the globally �xed maximum number of uniformlysampled moves are generated. For ea
h re
ursive 
all of the algorithm for a node, wetry ea
h su

essive move sampled from ea
h su

essive legal move region until either(1) all moves have been 
onsidered, or (2) the result of a sear
h indi
ates that we 
anprune future sear
h from this node.Experimental results of DASAT Alpha-Beta Sear
h with Uniform Dis
retizationon the magneti
 levitation problem are shown in Table 4.2. Figures 4.4, 4.5, and 4.6show the 
ontrol poli
ies (mappings from position and velo
ity to 
urrent) resultingfrom sear
hes to depths 2, 4, and 6, respe
tively. From the data, we 
an see that sear
hexe
ution is slower and pruning is less than that a
hieved by random dis
retization.Sin
e the dis
retization is as in the previous 
hapter, the 
ontrol poli
y is identi
alto that of alpha-beta sear
h of the previous 
hapter.Pruning is 
onsiderably less than that a
hieved by the random dis
retization.



CHAPTER 4. DASAT GAME-TREE SEARCH 83

0.006
0.008

0.01
0.012

0.014
0.016

0.018

−0.2

−0.1

0

0.1

0.2

0.3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

position (m)velocity (m/s)

cu
rr

en
t (

A
)

Figure 4.4: Maglev output 
urrents from DASAT Alpha-Beta with Uniform Dis-
retization, depth 2
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urrents from DASAT Alpha-Beta with Uniform Dis-
retization, depth 4
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Average Average Average Average AverageDepth Trials Time (mse
) Nodes P
t. Pruned Nodes/Se
 S
ore1 400 1 21 0.00 19,047 -1.58E-72 400 1 113 37.34 92,395 -1.58E-73 400 51 1,957 42.11 38,154 -3.31E-74 400 69 7,156 75.31 103,378 -3.31E-75 400 1,598 81,678 84.90 51,125 -5.26E-76 400 2,145 264,020 94.31 123,112 -5.26E-7Table 4.2: Results for DASAT Alpha-Beta Sear
h with Uniform Dis
retization
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Figure 4.6: Maglev output 
urrents from DASAT Alpha-Beta with Uniform Dis-
retization, depth 6



CHAPTER 4. DASAT GAME-TREE SEARCH 85In the spa
e of mappings, extreme 
urrent values are the most 
ommon output.Pruning will naturally be greater for algorithms whi
h sample both extremes in earlierexpansions. Information-based dis
retization 
he
ks extreme values �rst, randomdis
retization 
he
ks randomly, and uniform dis
retization 
he
ks uniformly from oneextreme to another. Uniform dis
retization will start 
he
king possible moves at thewrong extreme for pruning roughly half of the time that an extreme value will beoptimal for pruning. This a

ounts for the poor pruning results. For this problemdomain, we 
onje
ture that a greedy node ordering heuristi
 would yield mu
h betterpruning results. We will dis
uss this point further in the next se
tion.4.5 DASAT Information-Based Alpha-Beta Sear
hDASAT Information-Based Alpha-Beta Sear
h is our third augmentation of SASATHybrid Alpha-Beta Sear
h (Se
tion 3.4) with moves being 
hosen a

ording to pre-vious 
hoi
es and their respe
tive subtree sear
h results. A pseudo
ode des
riptionof this method is given in Algorithm 9. In alpha-beta sear
h, � and � represent thelower and upper bound of possible lo
al game-tree sear
h respe
tively. At the 
urrentnode under evaluation, we have a guarantee that MAX 
an s
ore at least � whileMIN will limit MAX to s
oring at most �. If we wish to maximize pruning, then �and � provide appropriate target values for information-based dis
retization.Uniform dis
retization provides the best dis
retization if our target is not bounded.Indeed, in the extreme 
ase where we have no guaranteed � or �, information-basedoptimization be
omes uniform dis
retization, always 
hoosing the next point to befarthest from those previously evaluated. However, if we are given bounds to possiblevalues for game-tree sear
h, then we 
an use su
h target values to inform intelligentsear
h. Information-based optimization is a natural 
hoi
e for this appli
ation for tworeasons: (1) The obje
tive fun
tion (subtree evaluation) is 
omputationally intensive
ompared to information-based optimization1, and (2) We have natural target valuesto inform optimization.1This holds for the one-dimensional 
ase. As we will see in Chapter 6, the 
omputational 
om-plexity of multidimensional information-based optimization 
an be overly burdensome.
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Algorithm 9 Information-Based Alpha-Beta Sear
hInfo-Based-Alpha-Beta(node, player , prevGuaranteeVe
tor , depth). Input: 
urrent node,
urrent player number,guaranteed player s
ores from previous sear
h (�, ��),depth of sear
h at node.Output: 
urrent node with sear
h resultsif (depth = 0 or leafNode(node)) thennode.abS
ore  s
ore(node)if (player = 1) thennode.abS
ore  �node.abS
orenode.bestMove  nullreturn nodeotherPlayer  (player + 1) mod 2s
oreGuaranteeVe
tor  prevGuaranteeVe
torbestMove  nullbestS
ore  �1forea
h region in legalMoveRegions(node, player) dooptimizer  new InfoBasedOptimizer(region,�prevGuaranteeVe
tor[otherPlayer℄)for i  1 to regionSamples(region) dopoint  nextPoint(optimizer)move  
reateMove(region.index , point)
hild  nextTurn(makeMove(
lone(node), move), player)
hild  Info-Based-Alpha-Beta(
hild, otherPlayer , s
oreGuaranteeVe
tor ,depth � 1)s
ore  �
hild.abS
oreif (bestMove = null or s
ore > bestS
ore) thenbestMove  movebestS
ore  s
oreif (bestS
ore � �prevGuaranteeVe
tor[otherPlayer℄) thengoto pruneif (bestS
ore > s
oreGuaranteeVe
tor[player℄) thens
oreGuaranteeVe
tor[player℄  bestS
oreaddData(optimizer , point , s
ore)prune:node.abS
ore  bestS
orenode.bestMove  bestMovereturn node



CHAPTER 4. DASAT GAME-TREE SEARCH 87Rather than write two pro
edures for the two players, Algorithm 9 uses negamaxrepresentation. Algorithm 9 takes as input the 
urrent sear
h node and player, theguaranteed s
ore bounds from previous sear
h (represented as (�, ��)), and the depthof sear
h remaining. It returns the 
urrent node with sear
h results (best s
ore andmove). If the node is at terminal sear
h depth or is a leaf node, then we evaluate thenode s
ore (negated for the adversary) and return.After initializing variables, we perform an information-based optimization on ea
ha
tion parameter region for a prede�ned sample limit. If, before we rea
h that samplelimit, an evaluated subtree yields a s
ore whi
h indi
ates that a rational player willnot allow play through the 
urrent node (i.e. the lower bound ex
eeds the upperbound), then all remaining sear
h is unne
essary and we prune it.For ea
h information-based optimization, we pi
k a point in the a
tion parameterregion, 
reate a move and 
hild node resulting from that move, and perform a re
ursive
all to sear
h the subtree rooted at that 
hild. The return results are negated be
auseof our negamax representation; ea
h player maximizes negated s
ores of the otherplayer. If the return s
ore is the best yet, we re
ord it. If it also a�e
ts � or �, weupdate the guarantees and prune if appropriate. At the end of ea
h iteration, wesupply the return data to the information-based optimization for use in 
hoosing amove for the next iteration.Experimental results of DASAT Information-Based Alpha-Beta Sear
h on themagneti
 levitation problem are shown in Table 4.3. Figures 4.7, 4.8, and 4.9 showthe 
ontrol poli
ies (mappings from position and velo
ity to 
urrent) resulting fromsear
hes to depths 2, 4, and 6, respe
tively. From the data, we 
an see that sear
h ex-e
ution is faster and pruning is greater than that a
hieved by random dis
retization.From the 
ontrol poli
ies, we see that the results are very similar to those a
hievedby uniform dis
retization. The quality of 
ontrol poli
ies will be explored further inthe next se
tion as we play these methods against one another.One �nal important note about this 
hapter 
on
erns a 
omparison to uniform dis-
retization with node ordering. In pra
ti
e, the heuristi
 of ordering subtree sear
hesa

ording to the preferred s
ore/utility of 
hild nodes 
an be a sour
e of signi�-
ant speedup. One might wonder when su
h a te
hnique would be preferred to this
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Figure 4.7: Maglev output 
urrents from DASAT Information-Based Alpha-Beta,depth 2
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Figure 4.8: Maglev output 
urrents from DASAT Information-Based Alpha-Beta,depth 4
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Average Average Average Average AverageDepth Trials Time (mse
) Nodes P
t. Pruned Nodes/Se
 S
ore1 400 1 21 0.00 18,667 -1.58E-72 400 1 52 71.14 35,354 -1.58E-73 400 30 497 85.30 16,295 -3.31E-74 400 40 1,243 95.71 31,157 -3.31E-75 400 719 16,787 96.90 23,347 -5.26E-76 400 1,081 55,185 98.81 51,032 -5.26E-7Table 4.3: Results for DASAT Information-Based Alpha-Beta Sear
h

0.006
0.008

0.01
0.012

0.014
0.016

0.018

−0.2

−0.1

0

0.1

0.2

0.3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

position (m)velocity (m/s)

cu
rr

en
t (

A
)

Figure 4.9: Maglev output 
urrents from DASAT Information-Based Alpha-Beta,depth 6



CHAPTER 4. DASAT GAME-TREE SEARCH 90information-based approa
h and vi
e versa. The answer is simple: If the problem do-main is su
h that lo
al s
ores are poor indi
ators of the relative quality of moves, theninformation-based optimization would be preferred. Information-based optimization
hooses su

essive points based on full evaluations of subtrees so performan
e is notdegraded by poor lo
al information. However, if the lo
al s
ores of immediate 
hildrenprovide good indi
ation of the relative quality of moves, then uniform dis
retizationwith node ordering may be simpler and preferable.4.6 Comparison of MethodsIn 
omparing these algorithms to one another, let us �rst turn our attention towardse�e
tive bran
hing fa
tor redu
tion. The a
tual bran
hing fa
tor may vary 
onsid-erably when sear
hing to a �xed depth d. In the 
ase of the maglev problem, thea
tual bran
hing fa
tor for a full sear
h alternates between 20 and 8 on su

essivelevels. One desires a simple means of 
omparing the e�e
tive bran
hing of sear
hgiven depth and node 
ount.The e�e
tive bran
hing fa
tor b is de�ned as the bran
hing fa
tor for whi
h 1+b+b2+: : :+bd equals the node 
ount[34℄. That is, b is the bran
hing fa
tor that e�e
tivelyresults in the same sear
h node 
ount for a given sear
h depth. A 
omparison ofe�e
tive bran
hing fa
tors for ea
h algorithm on the maglev problem is given inTable 4.4. E�e
tive Bran
hing Fa
tor b % of Full bDepth Random Uniform Info-Based No Prune Random Uniform Info-Based1 20.00 20.00 20.00 20.00 100 100 1002 7.58 10.09 6.66 12.93 59 78 523 8.72 12.16 7.56 14.66 60 83 524 6.46 8.93 5.66 12.78 51 70 445 7.16 9.39 6.78 13.81 52 68 496 6.17 7.83 5.99 12.74 48 61 47Table 4.4: Comparison of E�e
tive Bran
hing Fa
tor Redu
tion



CHAPTER 4. DASAT GAME-TREE SEARCH 91Information-based Alpha-Beta Sear
h yields signi�
antly lower e�e
tive bran
h-ing fa
tors than alpha-beta with either random or uniform dis
retization. Uniformdis
retization yields the highest e�e
tive bran
hing fa
tors. As mentioned in the pre-vious se
tion, a node ordering heuristi
 would address this weakness for the maglevproblem sin
e lo
al information is a good indi
ator of relative long-term quality ofa
tions.Previous experimentation is not adequate for 
omparing the relative quality ofthe resulting 
ontrol poli
ies. If any sear
h happened to perform a good 
ontrollersear
h and poor adversary sear
h, it would appear to be a stronger game-tree sear
halgorithm than it is. For this reason, we have played ea
h algorithm against ea
hother algorithm in order to give a true 
omparison of relative strength.At ea
h sampled position and velo
ity point in a uniform 20� 20 grid, we play agame where ea
h algorithm sear
hes to depth four in 
hoosing four su

essive moves.One algorithm 
hooses moves for the 
ontroller and the other 
hooses moves for theadversary. The two algorithms are swit
hed and the pro
ess is repeated.Results for random versus uniform dis
retization are given in Table 4.5. On av-erage, sear
h with random dis
retization takes 47% of the time taken using uniformdis
retization while sear
hing 26% of the nodes. Negative player s
ores are traje
tory
osts. Sear
h with uniform dis
retization yields lower 
ost traje
tories on average andthus better quality play.Average Average Average Average AveragePlayer Trials Time (mse
) Nodes P
t. Pruned Nodes/Se
 S
oreRandom 400 99.87 2,946 89.83 29.50 -3.41E-7Uniform 400 214.16 11,533 60.20 53.86 -3.31E-7Table 4.5: Results for Random versus Uniform Dis
retizationResults for random versus information-based dis
retization are given in Table 4.6.On average, sear
h with information-based dis
retization takes 67% of the time takenusing random dis
retization while sear
hing 92% of the nodes. Information-BasedAlpha-Beta Sear
h yields better play than Alpha-Beta with Random Dis
retization.
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Average Average Average Average AveragePlayer Trials Time (mse
) Nodes P
t. Pruned Nodes/Se
 S
oreRandom 400 99.94 2,950 89.82 29.52 -3.40E-7Info-Based 400 66.76 2,722 90.61 40.77 -3.31E-7Table 4.6: Results for Random versus Information-Based Dis
retizationResults for uniform versus information-based dis
retization are given in Table 4.7.On average, sear
h with information-based dis
retization takes 34% of the time takenusing uniform dis
retization while sear
hing 26% of the nodes. Information-BasedAlpha-Beta Sear
h and Alpha-Beta Sear
h with Uniform Dis
retization yield roughlyequivalent quality play. Average Average Average Average AveragePlayer Trials Time (mse
) Nodes P
t. Pruned Nodes/Se
 S
oreUniform 400 218.99 11,341 60.87 51.79 -3.31E-7Info-Based 400 73.68 2,924 89.91 39.68 -3.31E-7Table 4.7: Results for Uniform versus Information-Based Dis
retization4.7 Con
lusionsIn the beginning of this 
hapter, we formalized DASAT Hybrid System Games andDASAT Hybrid Systems Sear
h Problems. We 
ontinued study of the magneti
 lev-itation problem of Zhao, whi
h takes a game-theoreti
 approa
h using an adversaryto model worst-
ase e�e
ts of bounded model error, numeri
al simulation error, envi-ronmental perturbation, et
. In this 
hapter, we removed the assumption of havinggiven a
tion parameter region dis
retizations, and studied three di�erent ways ofdynami
ally dis
retizing a
tion parameter regions.Information-based alpha-beta is a novel appli
ation of information-based opti-mization whi
h uses the � lower bound and � upper bound of alpha-beta sear
h to
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eeded the good speed and pruningperforman
e of random dis
retization while mat
hing the 
ontrol poli
y quality ofuniform dis
retization.It should be noted that uniform dis
retization with a node ordering heuristi
should perform quite well in problem domains where lo
al s
ore information is a goodlong-term indi
ator of relative move quality. In 
ontrast, Information-Based Alpha-Beta Sear
h is not prone to poor lo
al s
ore information, as de
isions are based onthe results of full subtree sear
h.We next address hybrid system sear
h problems where a
tion timing dis
retiza-tions are not given.



Chapter 5SADAT Sear
hExtending dis
rete sear
h to hybrid system sear
h introdu
es two new de
isions inoptimization: a
tion dis
retization and a
tion timing dis
retization. In this 
hapterwe 
hoose to address the latter de
ision: How 
ould a sear
h algorithm 
hoose whento bran
h the sear
h tree and 
onsider possible a
tions? We will thus assume that
ontinuous a
tion spa
es are already dis
retized. From the perspe
tive of the sear
halgorithm, a
tion dis
retizations are stati
, i.e. the sear
h algorithm 
annot a�e
t thea
tion dis
retization. However, from the perspe
tive of the sear
h algorithm, a
tiontiming dis
retizations are dynami
, i.e. bran
hing points are 
hosen by the sear
halgorithm. For this reason, we will 
all su
h sear
hes \SADAT sear
hes" as they haveStati
 A
tion and Dynami
 A
tion Timing dis
retization.In this 
hapter, we will formally de�ne a SADAT Hybrid System Game and itssolitaire 
ase, a SADAT Hybrid System Sear
h Problem. A submarine dete
tionavoidan
e problem is introdu
ed as a fo
us for designing real-time 
ontrol delibera-tion. We present iterative re�nement, a new sear
h algorithm perhaps most simplydes
ribed as similar to iterative deepening sear
h within a limited time interval. Wealso present a new variation on best-�rst sear
h whi
h allows for more 
exible a
tiontiming. Then, we show how iterative re�nement 
an work quite well under heuristi
monotoni
ity and admissibility assumptions. Finally, we introdu
e �-optimal IterativeRe�nement Re
ursive Best-First Sear
h. 94



CHAPTER 5. SADAT SEARCH 955.1 SADATHybrid SystemGame and Sear
h Prob-lemFormally, a SADAT Hybrid System Game is de�ned as a 7-tuplefS; s0; A; p; l;m; dgwhere� S is the hybrid state spa
e with a �nite number of �nite dis
rete variable do-mains, and a �nite-dimensional 
ontinuous spa
e,� s0 2 S is the initial state,� A is the �nite dis
rete a
tion spa
e,� p is the number of players,� l : S � f1; : : : ; pg ! fa1; : : : ; ang 2 A is a legal move fun
tion mapping from astate and player number to a �nite set of legal a
tions whi
h may be exe
utedin that state by that player,� m : S�Ap ! S�<p is a move fun
tion mapping from a state and simultaneousplayer a
tions to a resulting state and the utility of the 
ombined a
tions forea
h player,� d : S�<+ ! S�<p is a delay fun
tion mapping from a state and non-negativetime delay to the resulting state and the utility of the traje
tory segment forea
h player. We require that d(s; 0) = fs; f0; : : : ; 0gg. Letting d(s1; t1) =fs2; fu1;1; : : : ; u1;pgg and d(s2; t2) = fs3; fu2;1; : : : ; u2;pgg, we also require thatd(s1; t1 + t2) = fs3; fu1;1 + u2;1; : : : ; u1;p + u2;pgg.The total utility of any �nite traje
tory is 
omputed as the sum of the traje
-tory move and delay utilities. In this time-invariant formalism, time 
an easily been
oded in a 
ontinuous 
lo
k variable, and time invariant behavior 
ould thus beeasily a
hieved.



CHAPTER 5. SADAT SEARCH 96A SADAT Hybrid System Sear
h Problem is a spe
ial 
ase of the SADAT HybridSystem Game where we are interested in �nding a traje
tory from the initial stateto a goal state. Usually su
h problems are stated in terms of path 
ost rather thanutility. Formally, a SADAT Hybrid System Sear
h Problem is de�ned as a 7-tuplefS; s0; Sg; A; l;m; dgwhere� S is a hybrid state spa
e with a �nite number of �nite dis
rete variable domains,and a �nite-dimensional 
ontinuous spa
e,� s0 2 S is an initial state,� Sg � S is a set of goal states,� A is a �nite dis
rete a
tion spa
e,� l : S ! fa1; : : : ; ang 2 A is a legal move fun
tion mapping from a state to a�nite set of legal a
tions whi
h may be exe
uted in that state,� m : S � A ! S � < is a move fun
tion mapping from a state and a
tion to aresulting state and 
ost of the a
tion,� d : S�<+ ! S�<p is a delay fun
tion mapping from a state and non-negativetime delay to the resulting state and the 
ost of the traje
tory segment. We re-quire that d(s; 0) = fs; f0; : : : ; 0gg. Letting d(s1; t1) = fs2; fu1;1; : : : ; u1;pgg andd(s2; t2) = fs3; fu2;1; : : : ; u2;pgg, we also require that d(s1; t1+ t2) = fs3; fu1;1+u2;1; : : : ; u1;p + u2;pgg.We next des
ribe a SADAT Hybrid System Sear
h Problem in the domain ofsubmarine ta
ti
al planning for dete
tion avoidan
e.



CHAPTER 5. SADAT SEARCH 975.2 Submarine Channel ProblemThe Submarine Channel Problem is not unlike a SegaTM video game of the 1980's
alled Frogger. A submarine seeks a path through a 
hannel su
h that it avoids beingdete
ted by a number of patrolling ships.5.2.1 The Submarine Ta
ti
al Planning AssistantThe 
hoi
e of this problem is motivated by the submarine ta
ti
al planning assistan
ework of Thomas C. Smith and David P. Watson (Johns Hopkins Laboratory AppliedPhysi
s Laboratory (JHUAPL)) and Peter W. Ja
obus (SONALYSTS, In
.)[46℄. TheGenerative Layer of their Ta
ti
al Planning Asso
iate[46, x 2.4.2℄ uses Re
ursive Best-First Sear
h (RBFS)[25℄ to \produ
e an ordered set of way-points that ins
ribe anoptimal path through a �eld of predi
tably moving and stationary obsta
les havingarbitrary avoidan
e areas." See Figure 5.1 for a s
reenshot of the interfa
e.Further details of the problem representation were obtained through personal
orresponden
e with Adam V. Peterson of JHUAPL. The a
tion spa
e is dis
retizedwith 8 headings and 3 speeds (full speed, half speed, stop). The a
tion timing spa
eis dis
retized as well a

ording to a uniform simulation update interval. The problemis formulated as a dis
rete sear
h.Enemy vessels ea
h have inner and outer dete
tion radii. Within the 
ir
le de-�ned by the vessel position and inner dete
tion radius, the submarine is dete
ted andpenalized heavily. Beyond the 
ir
le de�ned by the outer dete
tion radius, the sub-marine is safe from dete
tion. Between the 
ir
les, probability of dete
tion in
reasesalong with an asso
iated penalty for su
h risk. Speed and patrol traje
tories of enemyvessels are known a priori. There is neither un
ertainty nor 
hange in enemy vesselpatrolling; this is a solitaire game of perfe
t information.In using RBFS, the heuristi
 weight is set to 1.75, and the 
ost to the 
urrent stateis the sum of the time to the 
urrent state and a penalty 
al
ulated if the submarinehas passed within the outer radius of a ship.
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Figure 5.1: Ta
ti
al Planning Asso
iate Man-Ma
hine Interfa
e illustrating Genera-tive Layer, from [46, Figure 6℄5.2.2 The SADAT Submarine Channel ProblemWe have 
hosen a spe
i�
 
lass of submarine ta
ti
al planning problems for ease ofadjusting diÆ
ulty. Just as the n2 � 1 sliding tile puzzle has served as a ben
hmarkfor dis
rete sear
h te
hniques, we have 
hosen a simple problem easily s
aled andmodi�ed for greater diÆ
ulty.In the Submarine Channel Problem, the submarine starts at position (x; y) = (0; 0)with eastward heading and at full stop. To the east along an east-west 
hannel ofwidth w (
entered along y = 0) are n ships patrolling a
ross the width of the 
hannel.This is pi
tured in Figure 5.2.
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Figure 5.2: Submarine Channel ProblemEa
h ship j has an inner dete
tion radius ri;j and an outer dete
tion radius ro;j.Within a proximity of ri;j, ship j will dete
t the submarine and the submarine willbe penalized with a dete
tion penalty. Within a proximity of ro;j and beyond ri;j, thesubmarine in
urs a proximity penalty s
aling linearly from 0 at the outer radius tothe full dete
tion penalty at the inner radius. Beyond the outer radius, there is nopenalty. If the submarine 
ollides with the sides of the 
hannel, there is a 
ollisionpenalty. In the 
ase of 
ollision or dete
tion, the submarine is halted and allowedno further legal moves. The �rst ship patrols at an x-o�set xO�set1 of ro;1. Ea
hship i thereafter has xO�seti = xO�seti�1 + 3ri;i�1 + ri;i. Ship i has a patrollingroute de�ned by 
y
ling linearly between the following points: (xO�seti; w=2� ri;i),



CHAPTER 5. SADAT SEARCH 100(xO�seti + 2ri;i; w=2� ri;i), (xO�seti + 2ri;i;�w=2 + ri;i), and (xO�seti;�w=2 + ri;i).Ea
h ship begins at a given per
entage along this 
y
le. For n ships, the goal statesare all states within the 
hannel with x > xO�seti+2ri;n+ ro;n, i.e. all 
hannel pointsto the right of the rightmost outer dete
tion radius.The submarine 
an travel in 8 headings (multiples of �=4 radians), and 3 speeds:full speed, half speed, and full stop. Together these de�ne 17 distin
t a
tions the sub-marine 
an take at any point whi
h it has in
urred neither 
ollision nor full dete
tionpenalty.1 Ea
h ship travels at a single prede�ned speed.For this 
hapter, we have 
hosen w = 1 length unit. The outer radius of everyship is 0:2w. The inner radius of ea
h ship is 0:1w. The maximum velo
ity of thesubmarine is w=(1 time unit). All ship velo
ities are also w=(1 time unit). Ships arestarted at random per
entages through their patrol 
y
les. The dete
tion penaltyis set at 10000. Figure 5.3 shows a demonstration software animation frame from asolution to an instan
e of the 4-ship problem.Sin
e we use SADAT Iterative Re�nement Sear
h (x 5.3) as a baseline for 
om-parison, we 
hose a number of ships su
h that it would be 
hallenging for IterativeRe�nement to �nd a solution within 10 se
onds in our experimental 
ontext. Allprogramming was done in Java2, and all experimentation was done in MS-DOS usinga Dell Dimension XPS T450 with a 450 MHz Pentium CPU. It was found that the10-ship problem (Figure 5.4) was suÆ
iently 
hallenging for Iterative Re�nement soas to serve as a useful 
hallenge problem for SADAT and DADAT sear
hes.5.3 SADAT Iterative Re�nement Sear
hIn this se
tion, we limit sear
h to a �xed time horizon tf . For these approa
hes, westart with the simplest of sear
h trees over the time interval: a sear
h tree of depthone with a root at the initial state, a bran
h for ea
h legal a
tion and leaves at t = tf .1Sin
e we assume dis
rete, instantaneous 
hanges to headings and speeds, all full stop a
tionsare e�e
tively equivalent.2Programming was done with minimal optimization, sin
e rapid prototyping and 
larity weredesired.



CHAPTER 5. SADAT SEARCH 101

Figure 5.3: Submarine Channel Problem Demo, 4 ShipsThis tree, pi
tured leftmost in Figure 5.5, represents the possible out
omes if theagent were to only a
t at t = 0.With standard tree sear
h te
hniques, a sear
h tree is grown by expanding leafnodes. One looks forward from leaf nodes to further inform one's a
tion. Startingwith our simple sear
h tree, there is no need to look forward. We are evaluating allpossible traje
tories with respe
t to nodes at the sear
h time horizon, and we havealready looked forward to the sear
h time horizon. Rather, we wish to look within.There are many ways one 
an 
hoose a
tion timings to sear
h possible traje
toriesfrom t = 0 to t = tf . We begin with a simple method 
alled Iterative Re�nementwhi
h is perhaps most simply des
ribed as similar to iterative deepening sear
h withina limited time interval.Like iterative deepening, Iterative Re�nement 
onsists of a series of sear
hes. Ea
hsear
h is a depth-�rst sear
h where the tree is bran
hed at a set of time points. In
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Figure 5.4: Submarine Channel Problem Demo, 10 Ships

Figure 5.5: Iterative Re�nement



CHAPTER 5. SADAT SEARCH 103the ith iteration, iterative re�nement breaks the time interval [0; tf ℄ into i equaltime intervals and performs a sear
h to depth i. The resulting sear
h is pi
tured inFigure 5.5. The algorithm pseudo
ode is shown in Algorithms 10 and 11. It has thesame 
omputational time and spa
e 
omplexity as iterative deepening: O(bd) andO(d) respe
tively, where b is e�e
tive bran
hing fa
tor, and d is maximum sear
hdepth.Algorithm 10 SADAT Iterative Re�nement Depth-First Sear
hSADATIterativeRefinementDFS(rootNode, initialDelay, re�nementLimit). Input: root node,initial list of bran
hing times,limit on number of re�nement iterations.Output: best leaf node at time horizonbestNode  nullre�nement  1while (not re�nement > re�nementLimit) donewBestNode  SADAT-DFS(rootNode, initialDelay=re�nement, re�nement)if (bestNode = null or g(newBestNode) < g(bestNode)) thenbestNode  newBestNodere�nement  re�nement + 1return bestNodeAlgorithm 11 SADAT Depth-First Sear
hSADAT-DFS(node, delay, depthLimit). Input: sear
h node,simulation delay,depth of sear
h below node.Output: best subtree leaf node at time horizonif (depthLimit = 0) thenreturn nodebestNode  nullforea
h move m[i℄ of legalMoves(node) do
hild  wait(makeMove(
lone(node), m[i℄), delay)newBestNode  SADAT-DFS(
hild , delay, depthLimit � 1)if (bestNode = null or g(newBestNode) < g(bestNode)) thenbestNode  newBestNodereturn bestNodeThe results, shown in Table 5.1, are generally poor, ranging from 0 to 47 per
ent



CHAPTER 5. SADAT SEARCH 104depending on the given time horizon. While the rate of nodes/se
 is relatively mu
hhigher than other approa
hes, the primary problem with su
h a sear
h is that ea
hiteration sear
hes the full tree. The bran
hing fa
tor and e�e
tive bran
hing fa
torof ea
h sear
h is the same. A lot of unne
essary sear
h is done qui
kly, and the netresult is weak.Time Time to Goal Cost to GoalHorizon Results % Goal Min Avg Max Min Avg Max Nodes/Se
4.20 100 0 N/A N/A N/A N/A N/A N/A 10,2714.83 100 1 10.06 10.06 10.06 4.82 4.82 4.82 9,2325.46 100 14 10.02 10.04 10.08 4.79 5.17 5.45 8,3296.09 100 15 10.02 10.04 10.06 4.99 5.44 5.85 7,9556.72 100 47 10.02 10.04 10.08 5.07 6.11 6.69 7,3037.35 100 0 N/A N/A N/A N/A N/A N/A 7,831Table 5.1: Results for SADAT Simple Iterative Re�nement DFSIf we modify Algorithm 10 su
h that sear
h terminates as soon as a goal node isfound, we observe the results shown in Table 5.2. Although sear
h returns with a goalnode mu
h more frequently, the utility of the traje
tory to the goal node is generallypoor. On average the submarine in
urs high proximity penalties along the traje
tory.Without goal node termination, the algorithm returns the lowest 
ost traje
tory tothe time horizon for the entire iterated sear
h. Iterative re�nement depth-�rst sear
hwith goal node termination o�ers no su
h solution quality guarantee. All futurealgorithms of this 
hapter have some form of solution quality guarantee.Simple iterative re�nement sear
h is presented as a baseline for 
omparison forthe SADAT sear
h te
hniques that follow. In ea
h su

essive subse
tion, we make atradeo� of assumed a priori knowledge versus performan
e.5.4 SADAT Best-First Sear
hIn this se
tion, we introdu
e a novel variation of Best-First Sear
h (BFS) whi
h allowslimited 
exibility in varying a
tion timing. We begin by des
ribing a simpli�ed version



CHAPTER 5. SADAT SEARCH 105Time Time to Goal Cost to GoalHorizon Results % Goal Min Avg Max Min Avg Max Nodes/Se
4.20 100 4 0 0.01 0.03 2,090 5,745 8,911 9,4704.83 100 33 0 1.23 4.93 5 6,661 9,906 8,6085.46 100 84 0 1.01 9.05 5 6,313 10,001 7,6466.09 100 89 0 2.22 9.91 5 6,851 9,927 7,2346.72 100 100 0 1.62 7.32 5 6,714 10,000 6,5137.35 100 60 0 0.73 2.92 2,090 7,793 9,996 7,362Table 5.2: Results for SADAT Simple Iterative Re�nement DFS with Goal NodeTerminationof the algorithm in order to 
ommuni
ate both key 
on
epts of the sear
h and thereason for the limitation in timing 
exibility.As BFS is a heuristi
 sear
h, we assume the existen
e of a heuristi
 evaluationfun
tion to estimate the 
ost from any state to a goal state. Su
h information isused to make the sear
h sele
tive, i.e. to dire
t sear
h in the dire
tion whi
h is esti-mated to have the \optimal" solution. The term \optimal" may be rightly used ina dis
rete setting, but in this 
ontinuous problem domain, the sear
h is generally in-
omplete and therefore at most an approximation to optimal behavior. Theoreti
ally,given unbounded 
omputing resour
es, as the step-size approa
hes zero, an admissible(underestimating) heuristi
 fun
tion would give a solution approa
hing the optimalsolution.For the Submarine Channel Problem, there is a very simple heuristi
 estimate of
ost to goal state: the x distan
e to the end of the patrolled region divided by themaximum submarine speed.5.4.1 Simple SADAT Best-First Sear
hA detailed des
ription of Best-First Sear
h (BFS) 
an be found in [41, x 4.1℄. Afun
tion f 0 is de�ned over all nodes as the sum of the 
ost fun
tion g and the heuristi
fun
tion h0. Whereas g(n) is the path 
ost from the root node to n, h0(n) is an estimateof the minimum 
ost from n to a goal node. For ea
h node n, f 0(n) = g(n) + h0(n).
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ents of f 0 and h0 indi
ate that they are estimates of the unknown a
tualevaluation fun
tions f and h. Starting with a heap 
ontaining only the root, best-�rst sear
h iteratively sele
ts the minimum node a

ording to f 0 and 
he
ks to see ifthat node is a goal node. If so, it terminates. If not, it evaluates all 
hildren of thenode, pla
es them in the heap, and repeats the pro
ess.In our variation of BFS, we (1) assume a given largest time-step between a
tions,and (2) rede�ne node expansion to allow new open nodes along existing bran
hes.Regarding (1), we take as a parameter �t, a real-valued number of time units, whi
hserves as a default delay time between an expanded node and its new leaf 
hildren.Regarding (2), we rede�ne node expansion for three 
ases: the root node 
ase, leafnode 
ase, and internal node 
ase. These 
ases 
orrespond respe
tively to a nodehaving no parent and no 
hildren, having a parent and no 
hildren, and having aparent and a 
hild. One 
an prove indu
tively that these are the only three 
aseswhi
h 
an o

ur for our method of expansion.Simple SADAT Best-First Sear
h pseudo
ode is given in Algorithms 12{15 . Itbegins as normal BFS with the root node in the open heap. With ea
h iteration,the node with the lowest f 0(node) is extra
ted from the heap. If the node is a goalnode, the algorithm terminates with su

ess. Otherwise, its 
hildren are generatedand pla
ed on the open heap. The key di�eren
e is how new nodes are generated.For a root node, we simply generate its 
hildren. Ea
h 
hild is 
omputed by 
loningits parent, making the asso
iated legal move, and simulating forward �t. The 
hildis then pla
ed in a heap a

ording to f 0(
hild). This is pi
tured in the �rst transitionof Figure 5.6.For a leaf node, there is a slight di�eren
e. In addition to generating its 
hildren,we also generate a new parent node halfway (with respe
t to time delay) between theleaf node and its 
urrent parent node. This is pi
tured in the se
ond transition ofFigure 5.6.For an internal node, there is yet another di�eren
e. In addition to generatingnew 
hildren, i.e. all 
hildren but its single existing 
hild, and a new parent (as withthe leaf node), it generates a new 
hild halfway between itself and its pre-existing
hild. This is pi
tured in the third transition of Figure 5.6.
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Algorithm 12 SADAT Simple Best-First Sear
hSADAT-Simple-BFS(root). Input: root node.Output: goal node if one exists, otherwise no terminationnode  rootnode.parent  nullnode.
hild  nullwhile (not isGoal(node)) doif (node.parent = null) then. Root node 
asesimple-expand-root(node, empty-heap)elseif (node.
hild = null) then. Leaf node 
asesimple-expand-leaf(node, heap)else. Internal node 
asesimple-expand-internal-node(node, heap)node  extra
tMin(heap)return node
Algorithm 13 Simple Expansion of RootSimple-Expand-Root(node, heap). Input: root node,heap of unexpanded nodes.Output: noneforea
h move m[i℄ of legalMoves(node) do
hild  wait(makeMove(
lone(node), m[i℄), delay)
hild.parent  node
hild.
hild  null
hild.previousDelay  delayinsert(heap, 
hild , f(
hild))
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Algorithm 14 Simple Expansion of LeafSimple-Expand-Leaf(node, heap). Input: leaf node,heap of unexpanded nodes.Output: noneforea
h move m[i℄ of legalMoves(node) do
hild  wait(makeMove(
lone(node), m[i℄), delay)
hild.parent  node
hild.
hild  null
hild.previousDelay  delayinsert(heap, 
hild , f(
hild))newParent  wait(
lone(node.parent), node.previousDelay=2)newParent.parent  node.parentnewParent.
hild  nodenewParent.previousDelay  node.previousDelay=2node.parent.
hild  newParentnode.parent  newParentinsert(heap, newParent , f(newParent))

Figure 5.6: SADAT Best-First Sear
h
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Algorithm 15 Simple Expansion of Internal NodeSimple-Expand-Internal-Node(node, heap). Input: internal node,heap of unexpanded nodes.Output: noneforea
h non-null move m[i℄ of legalMoves(node) do
hild  wait(makeMove(
lone(node), m[i℄), delay)
hild.parent  node
hild.
hild  null
hild.previousDelay  delayinsert(heap, 
hild , f(
hild))newParent  wait(
lone(node.parent), node.previousDelay=2)newParent.parent  node.parentnewParent.
hild  nodenewParent.previousDelay  node.previousDelay=2node.parent.
hild  newParentnode.parent  newParentinsert(heap, newParent , f(newParent))newChild  wait(
lone(node), node.
hild.previousDelay=2)newChild.parent  nodenewChild.
hild  node.
hildnewChild.previousDelay  node.
hild.previousDelay=2node.
hild.parent  newChildnode.
hild  newChildinsert(heap, newChild , f(newChild))



CHAPTER 5. SADAT SEARCH 110The �rst important thing to note about this algorithm is that it allows a morere�ned temporal sear
h than best-�rst sear
h with a �xed delay. This is both astrength and a weakness under di�erent 
ir
umstan
es. While it 
an sometimes betterapproximate optimal solutions or �nd solutions whi
h 
annot be found without su
hre�nement, one 
an easily generate pathologi
al 
ases where SADAT Simple Best-First Sear
h 
annot �nd solutions whi
h 
an be found using best-�rst sear
h with a�xed delay.The se
ond important thing to note is one su
h signi�
ant pathologi
al 
ase whi
hmotivates the �nal pie
e of the full algorithm. Suppose we have the 
ase where our
ost fun
tion g monotoni
ally in
reases along any path of the sear
h tree, and ourfun
tion f 0 always underestimates a
tual 
ost to a goal node through any non-goalnode. Without looking far, we easily �nd an example: any submarine 
hannel problemwith h0(n) = 0 for all n.Given an f 0 with su
h 
hara
teristi
s, then for any open (non-expanded) node n1pre
eding another open node n2 along a path, f 0(n1) < f 0(n2). Put simply, earlierpossibilities always look better along a path in the tree. The rami�
ation of this fa
tand our method of node expansion, is that this 
ase will result in in�nite re�nementfrom a root 
hild ba
k toward the root.Given these 
hara
teristi
s, the best node generated by the best root 
hild willbe the new parent between the root and that 
hild. The best node generated by thenew parent will be its new parent, and so forth in�nitely. Clearly, su
h a method hasneed of some means to restri
t path re�nement so that su
h in�nite re�nement doesnot trap the sear
h in a lo
al minimum.5.4.2 SADAT Best-First Sear
h with Re�nement LimitsOne simple means of restri
ting re�nement is to limit the number of re�nements per-formed along any path. More spe
i�
ally, we keep 
ount of the number of times a newinternal node was introdu
ed in order to make a given path possible. Algorithmi
ally,we asso
iate with ea
h node n a re�nement level n.re�nementLevel. The root has a re-�nement level of 0. A new leaf 
hild inherits the re�nement level of its parent. A new



CHAPTER 5. SADAT SEARCH 111internal node n0 generated by node n has a re�nement level of n.re�nementLevel+1.The full algorithm of SADAT Best-First Sear
h (Algorithms 16{19) is Simple SA-DAT Best-First Sear
h augmented with the node re�nement levels and the restri
tionthat new nodes with re�nement levels whi
h would ex
eed a given re�nement limitare not generated. The worst-
ase 
omputational time and spa
e 
omplexity of SA-DAT Best-First Sear
h is bounded by that of a Best-First Sear
h performed on thefull SADAT Best-First Sear
h tree with maximal re�nement. If f never overesti-mates the 
ost to a goal node, then Best-First Sear
h is 
alled A� and is known tobe both optimal[9℄ and 
omplete3[41℄ in sear
hing the tree. However, 
omputationaltime 
omplexity is still exponential unless error in the heuristi
 fun
tion has a growthrate less than the logarithm of the a
tual path 
ost[35℄. However, the most important
omplexity issue for modern 
omputing is that of 
omputational spa
e 
omplexity.Exponential growth of the heap exhausts memory resour
es in little time for mod-ern 
omputers. One way of dealing with exponential 
omplexity is use of re
ursivebest-�rst sear
h, whi
h is dis
ussed in Se
tion 5.6.Results for the 10-Ship Submarine Channel Problem are shown in Table 5.3. Forthese trials, �t was arbitrarily set to 1=4 of the initial distan
e to goal divided bythe maximum submarine speed. The general tradeo� to note here is that of qualityversus speed of solution. While more re�nement yields better average solutions, fewersu
h solutions are found within the allotted 10-se
ond time limit.Re�nement Time to Goal Cost to GoalLimit Results % Goal Min Avg Max Min Avg Max Nodes/Se
0 100 82 0.01 1.31 9.60 4.88 7.14 9.17 2681 100 77 0.02 1.24 8.32 4.88 6.75 8.15 4182 100 78 0.03 1.71 7.12 4.88 6.36 7.44 4583 100 57 0.06 1.75 6.09 4.81 5.92 6.64 455Table 5.3: Results for SADAT Best-First Sear
h, �t = 1:05What this data does not show is how sensitive the performan
e is to the 
hoi
e of3Completeness is proven on lo
ally �nite graphs.
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Algorithm 16 SADAT Best-First Sear
hSADAT-BFS(root). Input: root node.Output: goal node if one exists, otherwise no terminationnode  rootnode.parent  nullnode.
hild  nullnode.re�nementLevel  0while (not isGoal(node)) doif (node.parent = null) then. Root node 
aseexpand-root(node, empty-heap)elseif (node.
hild = null) then. Leaf node 
aseexpand-leaf(node, heap)else. Internal node 
aseexpand-internal-node(node, heap)node  extra
tMin(heap)return node
Algorithm 17 Expansion of RootExpand-Root(node, heap). Input: root node,heap of unexpanded nodes.Output: noneforea
h move m[i℄ of legalMoves(node) do
hild  wait(makeMove(
lone(node), m[i℄), delay)
hild.parent  node
hild.
hild  null
hild.previousDelay  delay
hild.re�nementLevel  node.re�nementLevelinsert(heap, 
hild , f(
hild))
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Algorithm 18 Expansion of LeafExpand-Leaf(node, heap). Input: leaf node,heap of unexpanded nodes.Output: noneforea
h move m[i℄ of legalMoves(node) do
hild  wait(makeMove(
lone(node), m[i℄), delay)
hild.parent  node
hild.
hild  null
hild.previousDelay  delay
hild.re�nementLevel  node.re�nementLevelinsert(heap, 
hild , f(
hild))newParent  wait(
lone(node.parent), node.previousDelay=2)newParent.parent  node.parentnewParent.
hild  nodenewParent.previousDelay  node.previousDelay=2newParent.re�nementLevel  node.re�nementLevel + 1node.parent.
hild  newParentnode.parent  newParentinsert(heap, newParent , f(newParent))
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Algorithm 19 Expansion of Internal NodeExpand-Internal-Node(node, heap). Input: internal node,heap of unexpanded nodes.Output: noneforea
h non-null move m[i℄ of legalMoves(node) do
hild  wait(makeMove(
lone(node), m[i℄), delay)
hild.parent  node
hild.
hild  null
hild.previousDelay  delay
hild.re�nementLevel  node.re�nementLevelinsert(heap, 
hild , f(
hild))newParent  wait(
lone(node.parent), node.previousDelay=2)newParent.parent  node.parentnewParent.
hild  nodenewParent.previousDelay  node.previousDelay=2newParent.re�nementLevel  node.re�nementLevel + 1node.parent.
hild  newParentnode.parent  newParentinsert(heap, newParent , f(newParent))newChild  wait(
lone(node), node.
hild.previousDelay=2)newChild.parent  nodenewChild.
hild  node.
hildnewChild.previousDelay  node.
hild.previousDelay=2newChild.re�nementLevel  node.re�nementLevel + 1node.
hild.parent  newChildnode.
hild  newChildinsert(heap, newChild , f(newChild))



CHAPTER 5. SADAT SEARCH 115�t. Looking at Tables 5.4 and 5.5, we see that performan
e is very dependent on the
hoi
e of �t.Re�nement Time to Goal Cost to GoalLimit Results % Goal Min Avg Max Min Avg Max Nodes/Se
0 100 100 0.01 0.40 7.09 5.10 7.08 10.99 1861 100 100 0.02 0.43 7.29 5.10 6.83 9.59 3532 100 99 0.00 0.70 7.75 5.10 6.53 8.60 3593 100 97 0.03 1.03 7.57 5.10 6.31 7.62 359Table 5.4: Results for SADAT Best-First Sear
h, �t = 1:40Re�nement Time to Goal Cost to GoalLimit Results % Goal Min Avg Max Min Avg Max Nodes/Se
0 250 0.8 0.04 0.04 0.04 7.22 7.60 7.98 3481 250 0.8 0.05 0.07 0.09 7.22 7.60 7.98 3592 250 1.6 0.12 1.70 6.11 6.51 8.05 10.48 1093 250 2.0 0.13 1.02 4.07 5.05 6.56 8.78 215Table 5.5: Results for SADAT Best-First Sear
h, �t = 1:51SADAT Best-First Sear
h provides a novel means of �nding better solutions than
an be found with Best-First Sear
h with a �xed delay. This 
omes at a 
ost of timeto solution, however, so that this algorithm is better suited to o�ine appli
ationsthan real-time 
ontrol. It should also be noted that both of these best-�rst sear
halgorithms have exponential 
omputational spa
e 
omplexity.5.5 SADAT Iterative Re�nement with Strong Prun-ing, Node Ordering, and Upper BoundIn previous experimentation with Iterative Re�nement, we saw that performan
e waspoor, but not as sensitive to 
hoi
e of time horizon as SADAT Best-First Sear
h. As



CHAPTER 5. SADAT SEARCH 116long as the goal was within the time horizon and the time horizon did not extend toofar, the algorithm was more forgiving of an uninformed parameter 
hoi
e.In this se
tion, we introdu
e a variant of Iterative Re�nement whi
h trades o�generality for performan
e. By making a few simple assumptions about our problemdomain for pruning, and applying heuristi
 node ordering, we a
hieve 
onsiderablespeedup. The main novelty lies in how information from one iteration is used forpruning in the next.Weak and Strong Pruning: Unlike iterative deepening and other standardsear
h algorithms, the root node evaluation we are approximating through sear
h isthe minimum f 0-value of all nodes on the horizon. After the �rst path to a leaf issear
hed, we have a best path ending with a best leaf nbest.If we assume that our 
ost fun
tion g is monotoni
ally in
reasing, then we 
anprune subtrees rooted at any node n su
h that g(n) > f 0(nbest). Further, su
h pruning
onditions 
an be 
arried from one iteration to the next, sin
e all sear
hes are withrespe
t to the same time horizon. Put simply, ea
h better path we �nd fo
uses thesear
h thereafter through all iterations.In this 
ontext, we refer to the assumption that g is monotoni
ally in
reasing asa \weak" assumption. We refer to the asso
iated pruning as \weak" pruning. Thestronger assumption that 
an be made is that f 0 is monotoni
ally in
reasing. Thenwe 
an prune subtrees rooted at any node n su
h that f 0(n) > f 0(nbest). We refer tothis assumption and pruning as \strong".Node Ordering: A standard te
hnique for speeding up sear
h is 
alled nodeordering. The basi
 intuition is that one orders the expansion of nodes in su
h a wayas to have greater probability of �nding a goal node sooner. In order for the 
ost ofsu
h ordering to be bene�
ial, the ordering te
hnique must in
ur little 
omputational
ost. A 
ommon te
hnique whi
h is used here is to simply expand a node's 
hildrenin in
reasing order of their f 0-values. Note that this heuristi
 
omplements our desireto in
rease pruning.Upper Bound: Finally, we note that for this problem domain, not every solutionis a good solution. While the simulator halts the movement of the submarine whenit passes within any inner radius of a ship, it does not halt the submarine when it
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eived a proximity penalty. Thus, somesolutions are poor solutions.Spe
ifying an allowable upper bound on solution 
ost not only ensures that It-erative Re�nement will not stop with an undesired solution, it also aids sear
h byproviding pruning 
onditions from the beginning of sear
h.Iterative Re�nement with Strong Pruning, Node Ordering, and Upper Bound isdes
ribed in pseudo
ode in Algorithms 20 and 21.Algorithm 20 SADAT Iterative Re�nement with Strong Pruning, Node Ordering,and Upper BoundSADATIRwSPNOUB(rootNode, initialDelay, re�nementLimit , upperBound). Input: root node,initial list of bran
hing times,limit on number of re�nement iterations,upper bound on solution 
ost.Output: goal node with 
ost beneath upper bound if found,best leaf node found otherwiseglobalUpperBound  upperBoundglobalGoalFound  falseglobalBestNode  nullre�nement  1while (not globalGoalFound and not re�nement > re�nementLimit) doSADAT-DFS-SPNOUB(rootNode, initialDelay=re�nement , re�nement)re�nement  re�nement + 1return globalBestNodeTrials for the 10-Ship Submarine Channel Problem were performed with an upperbound 
ost of 10. This would mean that allowable solutions 
ould only pass a verysmall amount within the outer radius of a ship on the way to a solution. Results aregiven in Table 5.6.One key point to observe from these results is the tradeo� of generality in theform of domain knowledge for performan
e. However, this tradeo� should be madewhen it 
an, as su
h assumptions about f 0 
an often be either proven or enfor
edin the design of f 0. Solutions tend to be found more qui
kly with this te
hniquethan other te
hniques seen so far, so it is well suited to real-time ta
ti
al planningassistan
e. Compared to the 
omputational gains, we have traded o� little in the way



CHAPTER 5. SADAT SEARCH 118Algorithm 21 SADAT Depth-First Sear
h with Strong Pruning, Node Ordering,and Upper BoundSADAT-DFS-SPNOUB(node, delay , depthLimit). Input: sear
h node, simulation delay, and depth of sear
h below node.Output: noneif (isGoal(node)) thenglobalGoalFound  trueglobalBestNode  nodereturnif (depthLimit = 0 or numOfChildren(node) = 0) thenif (f(node) < f(globalBestNode)) thenglobalBestNode  nodereturnforea
h move m[i℄ of legalMoves(node) do
hild[i℄  wait(makeMove(
lone(node), m[i℄), delay)Sort 
hild[i℄ in in
reasing order of f(
hild[i℄)i  1done  falsewhile (not done and not globalGoalFound) do. Do not expand a node with f-value ex
eeding the global upper boundif (f(
hild[i℄) > globalUpperBound) thendone  trueelseSADAT-DFS-SPNOUB(
hild[i℄ , delay, depthLimit � 1)i  i + 1if (i > numOfChildren(node)) thendone  truereturn Time to Goal Cost to GoalTime Horizon Results % Goal Min Avg Max Min Avg Max Nodes/Se
4.20 500 0.0 N/A N/A N/A N/A N/A N/A 9384.83 500 57.4 0.06 2.08 10.40 4.29 4.68 4.83 5985.46 500 88.2 0.04 1.73 10.06 4.40 5.05 5.45 4116.09 500 93.6 0.11 2.21 10.30 4.40 5.46 6.09 3156.72 500 95.6 0.07 1.35 10.20 4.73 6.01 6.72 2817.35 500 92.8 0.06 1.87 10.46 4.99 6.36 7.35 281Table 5.6: Results for SADAT Iterative Re�nement with Strong Pruning, Node Or-dering, and Upper Bound



CHAPTER 5. SADAT SEARCH 119of generality.Another key point to observe are the 
onditions under whi
h the algorithm 
anreliably �nd a solution. We must 
hoose an appropriate time horizon for whi
hsolutions are not so rare that our sear
h is likely to �nd one. From this data onemight think that one has only to 
hoose a large enough time horizon to guaranteegood results. However, it is also the 
ase that one 
an 
hoose too large a time horizon.Considering this Submarine Channel Problem, assuming that there is no straight-linesolution through the patrolling ships, then there is a sear
h delay parameter abovewhi
h no solution exists. Given a time limit, one may set the time horizon suÆ
ientlyhigh as to have all sear
h within the time limit performed with delay parameters toohigh to �nd a solution. Put simply, if the time horizon is too high, then the granularityof sear
h is too high, and there is a performan
e penalty.5.6 SADAT Iterative Re�nement with Re
ursiveBest-First Sear
hIn Se
tion 5.4, we saw that Best-First Sear
h te
hniques have unfavorable, exponen-tial spa
e 
omplexity. In [25℄, Ri
hard Korf introdu
ed a linear spa
e 
omplexityalgorithm 
alled Re
ursive Best-First Sear
h (RBFS) whi
h expands new nodes insame order as Best-First Sear
h and thus has the same optimality guarantees. RBFSwas the te
hnique of 
hoi
e for the Submarine Ta
ti
al Planning Assistant des
ribedin Se
tion 5.2.1.In this Se
tion, we introdu
e an approximately optimal version of RBFS for SA-DAT problems, 
alled SADAT �-RBFS. We show that its performan
e is very sensi-tive to the input delay parameter. We then introdu
e SADAT Iterative Re�nement�-RBFS. Compared to other general-appli
ability SADAT algorithms whi
h do notrequire a monotoni
ity assumption, SADAT Iterative Re�nement �-RBFS yields thebest behavior with the least sensitivity to initial parameters.
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ursive Best-First Sear
h with Fixed De-layIn order to apply Re
ursive Best-First Sear
h (RBFS) to 
ontinuous domains, thereare two issues whi
h must �rst be addressed. The �rst 
on
erns a
tion timing dis-
retization. In this se
tion, we 
hoose the simplest solution and assume that for any
all to RBFS, a �xed delay is used to generate 
hildren.The se
ond issue to address is the nature of 
oating point node evaluations. Thiswas not an issue in Best-First Sear
h, be
ause nodes are only expanded on
e. RBFSuses a lo
al 
ost threshold for ea
h re
ursive depth-�rst sear
h 
all. The 
ost thresholdis updated using the least 
ost value of frontier nodes beyond the threshold. If thesame subtree is sear
hed again, it is with this updated value. In this way, nodes areexpanded in best-�rst order, using a depth-�rst te
hnique whi
h 
an expand the samenode many times. This is a tradeo� of 
omputational time for spa
e.The fa
t that so many nodes will have distin
t 
oating-point 
osts means thatnodes will be expanded many times more than in dis
rete domains where evaluationsare integer-valued and in a 
on
entrated distribution. This same issue arises whenapplying iterative deepening sear
h to 
ontinuous domains.The way this issue is dealt with for iterative deepening te
hniques in 
omplexdomains is to in
rease the iterative deepening 
ost limit by a �xed amount � on ea
hiteration. Then the total number of iterations is proportional to 1=� and the algorithmis 
alled �-admissible[41, x 4.3, IDA*℄.We 
an do something similar for RBFS. When ea
h subtree is sear
hed and the
hild is repla
ed in the heap, we make sure that its evaluation is in
reased by at least�. �-RBFS is given in pseudo
ode in Algorithm 22.The result of applying �-RBFS to the 10-Ship Submarine Channel Problem isshown in Table 5.7. Observing these results, one is stru
k by the extreme sensitivityof the sear
h su

ess to the �xed delay parameter.
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ursive Best-First Sear
hSADATeRBFS(node, nodeF , bound , delay, espilon). Input: node, 
alling stored sear
h value of node, lo
al 
ost upper bound,simulation delay, and epsilon minimum bound in
rement.Output: return stored sear
h value of nodeif (f(node) > bound) thenreturn f(node)if (isGoal(node)) thengoalNode  nodeexit algorithmif (numOfChildren(node) = 0) thenreturn 1forea
h move m[i℄ of legalMoves(node) do
[i℄  wait(makeMove(
lone(node), m[i℄), delay)if (f(node) < nodeF ) then
F[i℄  max(nodeF , f(
[i℄))else
F[i℄  f(
[i℄)insert(heap, 
[i℄ , 
F[i℄)f
, 
Fg  extra
tMin(heap)while (
F � bound and 
F <1) do. The new lo
al upper bound must in
rease by at least epsilon.if (numofChildren(node) > 1) then
F  max(SADATeRBFS(
, 
F , min(bound , minValue(heap))), 
F + epsilon)else
F  max(SADATeRBFS(
, 
F , bound), 
F + epsilon)insert(heap, 
, 
F )f
, 
Fg  extra
tMin(heap)return 
F5.6.2 SADAT Iterative Re�nement with � - Re
ursive Best-First Sear
hThe sensitivity of the su

ess of �-RBFS to the delay parameter motivates an attemptto use �-RBFS with di�erent delays. In this se
tion, we apply the idea of iterativere�nement to �-RBFS and �nd that the resulting algorithm has ex
ellent performan
ea
ross a broad range of initial parameters.In Se
tion 3.2 of [25℄, Korf dire
ts the user of RBFS to make a top-level 
all toRBFS with an upper bound of1. Indeed, an upper bound of1 makes perfe
t sense



CHAPTER 5. SADAT SEARCH 122Time to Goal Cost to GoalDelay Results % Goal Min Avg Max Min Avg Max Nodes/Se
1.00 500 99.4 0.00 0.41 10.02 4.70 6.28 8.99 496.121.25 500 91.0 0.01 0.29 4.93 5.01 7.13 9.90 423.401.50 500 0.2 0.05 0.05 0.05 7.95 7.95 7.95 349.711.75 500 0.4 0.03 0.06 0.10 5.95 7.70 9.45 234.24Table 5.7: Results for SADAT � - Re
ursive Best-First Sear
h, � = 0:25when one has only one possible sear
h spa
e. In our 
ase, we have in�nite ways ofdis
retizing a
tion timing, and therefore in�nite possible spa
es to explore.Keeping with the prin
iple of trying simple solutions �rst, we seek to reapply theidea of Iterative Re�nement to �-RBFS. However, if we use an upper-bound of1, the�rst iteration with the initial delay will never terminate if it does not �nd a solution.Fortunately, Korf's algorithm is designed su
h that it also makes sense to use valuesother than 1 in the top-level 
all.If we simply provide an upper bound on 
ost as we did with Iterative Re�nementwith Strong Pruning, Node Ordering, and Upper Bound, then we have an algorithmwhi
h does an �-admissible sear
h of all nodes within the 
ost upper bound on ea
hiteration, su

essively re�ning until the granularity is �ne enough for a solution to befound within that bound if it exists. Iterative Re�nement with �-RBFS is des
ribedin pseudo
ode in Algorithm 23.Algorithm 23 SADAT Iterative Re�nement with � - Re
ursive Best-First Sear
hSADATIReRBFS(rootNode, bound , initialDelay, espilon, re�nementLimit). Input: root node, upper bound on solution 
ost,initial simulation delay, epsilon minimum bound in
rement,limit on number of re�nement iterations.Output: goal node if solution found, null if notgoalNode  nullre�nement  1while (goalNode = null and not re�nement > re�nementLimit) doSADATeRBFS(rootNode, f(rootNode), bound , initialDelay=re�nement, espilon)re�nement  re�nement + 1return goalNode



CHAPTER 5. SADAT SEARCH 123The result of applying Iterative Re�nement with �-RBFS to the 10-Ship SubmarineChannel Problem is shown in Table 5.8. Now we are able to a
hieve ex
ellent resultsa
ross a broad range of initial delay values.Initial Time to Goal Cost to GoalDelay Results % Goal Min Avg Max Min Avg Max Nodes/Se
4.20 100 99 0.08 0.28 3.66 5.10 7.03 9.63 379.624.83 100 91 0.11 0.73 4.75 4.98 7.16 9.74 421.165.46 100 100 0.17 0.51 5.92 5.08 7.06 9.98 357.036.09 100 92 0.27 0.64 5.82 4.99 7.09 9.86 419.846.72 100 95 0.20 0.58 6.05 5.07 6.96 9.77 401.767.35 100 95 0.37 0.82 9.64 4.99 7.18 10.00 403.07Table 5.8: Results for SADAT Iterative Re�nement with � - Re
ursive Best-FirstSear
h, � = 0:25In 
ontrast to Iterative Re�nement with Strong Pruning, Node Ordering, andUpper Bound, we do not need to make any assumptions about properties of f 0 forthis algorithm to be appli
able. We also do not need to be 
on
erned with pi
king alarge enough time horizon, sin
e our sear
h is not limited to a time horizon.Furthermore, Iterative Re�nement with �-RBFS provides a guarantee for the qual-ity of the solution: Given initial delay �t and admissible f 0, then any solution returnedby the algorithm on iteration i will have a 
ost at most � above the optimal solutionin the full tree with delay �t=i. If one 
an further prove a bound on the approxi-mate optimality of the sear
h tree of ea
h iteration, then one 
an skip overly 
oarseiterations and set lo
al �i parameters for �ner iterations su
h that one 
an guarantee�-optimal solutions.SADAT Iterative Re�nement with � - Re
ursive Best-First Sear
h provides a gen-eral, eÆ
ient, and su

essful method for SADAT sear
h provided one 
an supply auseful heuristi
 evaluation fun
tion f 0 and an initial delay parameter whi
h does notmake sear
h overly 
oarse or overly �ne. As one 
an see in Table 5.8, the initial delayparameter 
an vary 
onsiderably and still allow ex
ellent performan
e.



CHAPTER 5. SADAT SEARCH 1245.7 Summary and Con
lusionsIn the beginning of this 
hapter, we formalized SADAT Hybrid System Games andSADAT Hybrid Systems Sear
h Problems. After des
ribing the 
urrent SubmarineTa
ti
al Planning Assistan
e work of Smith, Ja
obus, and Watson, we de�ned a 
lassof problems for use as a ben
hmark in 
omparing approa
hes to SADAT sear
h.We �rst introdu
ed SADAT Iterative Re�nement Sear
h, a generally appli
ablemethod whi
h limits sear
h to a time horizon with iteratively �ner timing granularity.While performan
e is relatively poor with respe
t to the other algorithms of this
hapter, this non-sele
tive, brute-for
e sear
h serves as a good baseline for 
omparison.In 
ontrast to the resear
h of this and the next 
hapter, almost all tree-based sear
hresear
h assumes a �xed a
tion timing dis
retization. A small amount of resear
h
on
erning sear
h with di�erent timing granularities has been presented within theabstra
tion, reformulation, and approximation resear
h 
ommunity. However, aftersear
hing literature and talking with several experts in roboti
s sear
h and AI, itappears that iterative re�nement with respe
t to a time horizon is unique.SADAT Best-First Sear
h is a novel variation of Best-First Sear
h. Although one
ould argue that Geneti
 Algorithms allow bran
hes to be split through mutation,SADAT Best-First Sear
h appears to be the �rst systemati
 sear
h to split bran
hesand dynami
ally generate new internal nodes. This is 
ontrasted with hierar
hi
alde
omposition in planning where su
h \internal" nodes are prede�ned. While per-forming mu
h better than SADAT Iterative Re�nement, SADAT Best-First Sear
hshowed a tradeo� of time to solution versus quality of solution. As su
h, it is bet-ter suited to o�ine design appli
ations than real-time 
ontrol appli
ations. UnlikeSADAT Iterative Re�nement, SADAT Best-First Sear
h and all the following algo-rithms of this 
hapter require a heuristi
 evaluation fun
tion f 0 whi
h takes ea
h nodeas input and returns an estimate of the 
ost to rea
h a goal node through that node.For our problem domain, a simple heuristi
 is easy to 
ome by, but in general a goodheuristi
 is not ne
essarily straightforward.Next, we augmented SADAT Iterative Re�nement Sear
h with strong pruning,



CHAPTER 5. SADAT SEARCH 125node ordering, and an upper bound on solution 
ost. Strong pruning and node or-dering are standard sear
h speedup te
hniques. However, our use of the upper boundis novel and interesting. Sin
e this tree sear
h is unusual in that all iterations sear
hwith respe
t to the same time horizon, the upper bound does not merely fo
us sear
hwithin an iteration as in
reasingly better leaf nodes are found. It also fo
uses sear
ha
ross all sear
hes in future iterations. Ability to �nd solutions to the 10-Ship Subma-rine Channel Problem was ex
ellent for a broad sele
tion of time horizons. However,this algorithm assumes that (1) one knows a good time horizon a priori, and (2)that f 0 monotoni
ally in
reases and is admissible. Generality of appli
ability is againtraded o� for performan
e.Finally, we presented a new �-admissible variant of Re
ursive Best-First Sear
h(�-RBFS). Seeing that its performan
e is very sensitive to the initial time delay, wemake novel use of the �-RBFS upper bound input parameter and again apply iter-ative re�nement, The resulting algorithm, Iterative Re�nement with �-RBFS, hadex
ellent performan
e a
ross a broad range of input parameters. Furthermore, thesolution 
omes with a guarantee that it has a 
ost at most � greater than the optimalsolution in the full tree of the last iteration. All of this 
omes without the monotoni
-ity assumption of SADAT Iterative Re�nement Sear
h with Strong Pruning, NodeOrdering, and Upper Bound.Thus, we have made a series of novel forays into a new and 
hallenging 
lass ofsear
h problems. Noti
e that these approa
hes make very few assumptions aboutthe problem domain beyond the simulation model. Most roboti
s navigation andmotion planning algorithms make good use of the stru
ture and 
onstraints of therobot and environment. Generally speaking, the more one 
an eÆ
iently make useof knowledge and stru
ture of a problem domain, the greater the performan
e ofthe approa
h. \Knowledge is power." These algorithms seek to make minimal useof domain-spe
i�
 knowledge in order to provide general kernels from whi
h manyfuture advan
es 
an grow.One possible future dire
tion is to dynami
ally dis
retize a
tion timing a

ordingto a measure of \quies
en
e", or la
k of immediate 
hange in s
ore. If the problem
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an provide an indi
ation of the importan
e of a
tion frequen
y (e.g. dis-tan
e to a threat for the submarine problem), then we have an additional sour
e ofknowledge to levy for sear
h eÆ
ien
y. In the future, we hope to identify simple waysof improving dynami
 dis
retization without 
on�ning ourselves to narrow problemdomains.In the next 
hapter, we apply these same general a
tion timing dis
retization ideasto problems where we do not assume a given a
tion dis
retization.



Chapter 6DADAT Sear
hExtending dis
rete sear
h to hybrid system sear
h introdu
es two new de
isions inoptimization: a
tion dis
retization and a
tion timing dis
retization. In this 
hapterwe 
hoose to address both de
isions: How 
ould a sear
h algorithm 
hoose both whenand how to bran
h the sear
h tree in order to 
onsider possible a
tions? From theperspe
tive of the sear
h algorithm, both a
tion dis
retization and a
tion timing dis-
retization are dynami
, i.e. both dis
retizations are 
hosen by the sear
h algorithm.For this reason, we will 
all su
h sear
hes \DADAT sear
hes" as they have Dynami
A
tion and Dynami
 A
tion Timing dis
retization.In this 
hapter, we formally de�ne a DADAT Hybrid System Game and its solitaire
ase, a DADAT Hybrid System Sear
h Problem. We 
ontinue to examine the subma-rine 
hannel problem, and 
ompare the relative merits of random, information-based,and dispersed dis
retizations in augmenting the iterative re�nement sear
hes of theprevious 
hapter. The dispersed dis
retization is presented as a 
ompromise betweenthe fast speed of random dis
retization, and the intelligent, slow de
ision pro
edureof information-based dis
retization. We �nd that the orientation of the headings inthe given dis
retization of the previous 
hapter is very signi�
ant to performan
e.Dispersed dis
retization yields far better results than the given dis
retization of theprevious 
hapter with randomly-rotated submarine headings.
127



CHAPTER 6. DADAT SEARCH 1286.1 DADATHybrid SystemGame and Sear
h Prob-lemFormally, a DADAT Hybrid System Game is de�ned as a 7-tuplefS; s0;A; p; l;m; dgwhere� S is the hybrid state spa
e with a �nite number of �nite dis
rete variable do-mains, and a �nite-dimensional 
ontinuous spa
e,� s0 2 S is the initial state,� A is a �nite set fA1; : : : ; Ang of 
ontinuous a
tion regions indexed f1; : : : ; ng,� p is the number of players,� l : S � f1; : : : ; pg ! A0 where A0 � A is a legal move fun
tion mapping from astate and player number to a �nite set of legal 
ontinuous a
tion regions whi
h
ontain points representing all legal a
tions that may be exe
uted in that stateby that player,� m : S�ap ! S�<p is a move fun
tion mapping from a state and simultaneousplayer a
tions (region index, region point pairs) to a resulting state and theutility of the 
ombined a
tions for ea
h player,� d : S�<+ ! S�<p is a delay fun
tion mapping from a state and non-negativetime delay to the resulting state and the utility of the traje
tory segment forea
h player. We require that d(s; 0) = fs; f0; : : : ; 0gg. Letting d(s1; t1) =fs2; fu1;1; : : : ; u1;pgg and d(s2; t2) = fs3; fu2;1; : : : ; u2;pgg, we also require thatd(s1; t1 + t2) = fs3; fu1;1 + u2;1; : : : ; u1;p + u2;pgg.An a
tion is represented by the index f1; : : : ; ng of the relevant a
tion spa
e, anda point within the spa
e. The total utility of any �nite traje
tory is 
omputed as the
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tory move and delay utilities. In this time-invariant formalism, time
an easily be en
oded in a 
ontinuous 
lo
k variable, and time invariant behavior
ould thus be easily a
hieved.A DADAT Hybrid System Sear
h Problem is a spe
ial 
ase of the DADAT HybridSystem Game where we are interested in �nding a traje
tory from the initial stateto a goal state. Usually su
h problems are stated in terms of path 
ost rather thanutility. Formally, a DADAT Hybrid System Sear
h Problem is de�ned as a 7-tuplefS; s0; Sg;A; l; m; dgwhere� S is a hybrid state spa
e with a �nite number of �nite dis
rete variable domains,and a �nite-dimensional 
ontinuous spa
e,� s0 2 S is an initial state,� Sg � S is a set of goal states,� A is a �nite set fA1; : : : ; Ang of 
ontinuous a
tion regions indexed f1; : : : ; ng,� l : S ! A0 where A0 � A is a legal move fun
tion mapping from a state to a�nite set of legal 
ontinuous a
tion regions whi
h 
ontain points representingall legal a
tions that may be exe
uted in that state,� m : S� a! S�< is a move fun
tion mapping from a state and a
tion (regionindex, region point pair) to a resulting state and 
ost of the a
tion,� d : S�<+ ! S�<p is a delay fun
tion mapping from a state and non-negativetime delay to the resulting state and the 
ost of the traje
tory segment. We re-quire that d(s; 0) = fs; f0; : : : ; 0gg. Letting d(s1; t1) = fs2; fu1;1; : : : ; u1;pgg andd(s2; t2) = fs3; fu2;1; : : : ; u2;pgg, we also require that d(s1; t1+ t2) = fs3; fu1;1+u2;1; : : : ; u1;p + u2;pgg.



CHAPTER 6. DADAT SEARCH 1306.2 DADAT Submarine Channel ProblemThe DADAT version of the SADAT Submarine Channel Problem of Se
tion 5.2 isthe same with only one modi�
ation. The submarine may now turn to any headingand travel at any speed up to its maximum speed. Thus the sole legal a
tion regionis a 
ir
le 
entered at the origin with radius equal to the magnitude of the maximumspeed. Any point within the 
ir
le de�nes a legal heading and speed for the submarine.As the algorithms in this 
hapter are variations of previous SADAT sear
h algo-rithms with di�erent means of sele
ting a
tions, we will be judging su
h means withrespe
t to the previous results where an expli
it a
tion dis
retization is given. In all
ases, we will use the previous bran
hing fa
tor of 17 so that in 
omparing DADATsear
h results to SADAT sear
h results, we 
an learn something of the quality of thedynami
 a
tion dis
retizations.6.3 DADAT Iterative Re�nement with RandomA
tion Dis
retizationIn this se
tion, we introdu
e a simple variation of SADAT Iterative Re�nement withStrong Pruning, Node Ordering, and Upper Bound (x 5.5) in whi
h we randomlysample a
tions from the legal a
tion regions. In addition to the previous parameters,we require the 
aller to indi
ate the number of samples used to sample ea
h a
tionregion. Thus, the pseudo
ode is as shown in Algorithms 24 and 25.In 
omparing the results of DADAT Iterative Re�nement with Random A
tionDis
retization in Table 6.1 with the algorithm's SADAT 
ounterpart in Table 5.6, themost noti
able di�eren
e is that a larger time horizon is needed for the algorithm toa
hieve 
omparable su

ess. This is due in part to two main reasons.First, the given SADAT dis
retization had eight a
tions at full speed in di�er-ent headings. If one were to 
ompare maximum speeds and headings of paths inour SADAT sear
hes and this DADAT sear
h, one would noti
e a mu
h di�erentdistribution. The SADAT sear
h will sear
h faster traje
tories than those randomlygenerated from possible legal moves.
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Algorithm 24 DADAT Iterative Re�nement with Strong Pruning, Node Ordering,Upper Bound, and Random Dis
retizationDADAT-IR-SPNOUB-Random(rootNode, initialDelay, re�nementLimit ,upperBound , sampleVe
tor). Input: root node,initial list of bran
hing times,limit on number of re�nement iterations,upper bound on solution 
ost,ve
tor of samples for ea
h possible a
tion parameter region.Output: goal node with 
ost beneath upper bound if found,best leaf node found otherwiseglobalUpperBound  upperBoundglobalGoalFound  falseglobalBestNode  nullre�nement  1while (not globalGoalFound and not re�nement > re�nementLimit) doDADAT-DFS-SPNOUB-Random(rootNode, initialDelay=re�nement,re�nement, sampleVe
tor)re�nement  re�nement + 1return globalBestNode
Time Time to Goal Cost to GoalHorizon Results % Goal Min Avg Max Min Avg Max Nodes/Se
4.20 100 0 N/A N/A N/A N/A N/A N/A 1,231.644.83 100 1 0.30 0.30 0.30 4.76 4.76 4.76 1,200.955.46 100 38 0.07 3.27 10.06 4.96 5.29 5.46 928.316.09 100 61 0.10 2.26 10.07 5.01 5.77 6.09 770.256.72 100 73 0.08 2.74 10.06 5.14 6.24 6.71 656.717.35 100 84 0.16 3.09 10.08 5.38 6.79 7.35 584.01Table 6.1: Results for DADAT Iterative Re�nement with Random A
tion Dis
retiza-tion
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Algorithm 25 DADAT Depth-First Sear
h with Strong Pruning, Node Ordering,Upper Bound, and Random Dis
retizationDADAT-DFS-SPNOUB-Random(node, delay, depthLimit , sampleVe
tor). Input: sear
h node,simulation delay,depth of sear
h below node, andve
tor of samples for ea
h possible a
tion parameter regionif (isGoal(node)) thenglobalGoalFound  trueglobalBestNode  nodereturnif (depthLimit = 0 or legalMoveRegions(node) = null) thenif (f(node) < f(globalBestNode)) thenglobalBestNode  nodereturn
hildCount  0forea
h move region r[i℄ of legalMoveRegions(node) dofor i  1 to sampleVe
tor[r[i℄.index℄ do
hildCount  
hildCount + 1
hild[
hildCount℄  wait(makeMove(
lone(node), randomMove(r[i℄)), delay)Sort 
hild[i℄ in in
reasing order of f(
hild[i℄)i  1done  falsewhile (not done and not globalGoalFound) do. Do not expand a node with f-value ex
eeding the global upper boundif (f(
hild[i℄) > globalUpperBound) thendone  trueelseDADAT-DFS-SPNOUB-Random(
hild[i℄ , delay, depthLimit � 1)i  i + 1if (i > 
hildCount) thendone  truereturn
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ond, most solutions found by SADAT sear
hes tend to run due east along thetop bank, varying speed as ne
essary to time passing between patrolling ships just asa person walks through an automati
 revolving door. In previous experimentation,optimal traje
tories often 
ontained segments where the submarine was heading dueeast at full speed. In randomly generating headings and speeds, the sear
h will notalways be presented with a similar a
tion, and thus will not �nd solutions as optimalor as often.It would be desirable to see how mu
h the de
rease in performan
e of these resultsis due to not having the SADAT dis
retization's full-speed a
tions versus not havingthe SADAT dis
retization's due-east a
tions. One way would be to randomly rotatethe SADAT dis
retization and see the resulting performan
e. Another way would beto add an additional linear move region 
onsisting of di�erent speeds with a due-eastheading. Allotting samples to a se
ond move region would amount to providingadditional domain knowledge for sear
h. In keeping with a desire for maximumgenerality, we will use the former means rather than the latter.The results of using SADAT Iterative Re�nement with Strong Pruning, NodeOrdering, and Upper Bound with random rotations of the original a
tion dis
retiza-tion are shown in Table 6.2. From these results, it is immediately apparent that theorientation of our original dis
retization was very signi�
ant. Neither approa
h isbetter for all 
hosen time horizons. While random dis
retization is 
learly dominatedby the original dis
retization, it is roughly 
omparable to the randomly rotated dis-
retization. The random dis
retization su

ess rate for �nding solutions peaks at agreater time horizon than that of the randomly rotated dis
retization. With ran-dom dis
retization, the average a
tion speed will be less than that of the rotateddis
retization, ne
essitating a greater time horizon on average for solutions.
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Time Time to Goal Cost to GoalHorizon Results % Goal Min Avg Max Min Avg Max Nodes/Se
4.20 100 0 N/A N/A N/A N/A N/A N/A 1,120.864.83 100 26 0.12 4.63 10.04 4.43 4.74 4.83 923.825.46 100 61 0.24 3.35 10.04 4.71 5.26 5.45 740.126.09 100 73 0.23 3.71 9.87 4.44 5.67 6.08 599.266.72 100 67 0.09 3.94 9.94 4.91 6.11 6.72 538.887.35 100 49 0.17 4.42 10.04 4.88 6.50 7.33 513.83Table 6.2: Results for SADAT Iterative Re�nement with Strong Pruning, Node Or-dering, Upper Bound, and Randomly Rotated A
tion Dis
retization6.4 DADAT Iterative Re�nement with Information-Based A
tion Dis
retizationIn this se
tion, we take a di�erent approa
h to the sele
tion of a
tions for sear
h.Rather than sele
ting them randomly, we apply information-based optimization. Thepseudo
ode is given in Algorithms 26{29.When applied to the DADAT Submarine Channel Problem, this algorithm was notable to solve any of the 100 problem instan
es with any of the 6 di�erent time horizons.In the DASAT work of Chapter 4, we saw the bene�t of applying Information-BasedOptimization to the 
hoi
e of a
tions in alpha-beta sear
h. In the Magneti
 LevitationProblem, we were interested in o�ine design where a single one-dimensional a
tionregion de�ned possible 
ontrol a
tions, i.e. possible solenoid 
urrent settings. In onedimension, information-based optimization allows for dire
t 
al
ulation of the nextbest point to evaluate.In this DASAT Submarine Channel Problem, the a
tion spa
e is two-dimensional.Thus we must use the 
andidate-sampling multidimensional version of Information-Based Optimization whi
h sele
ts random 
andidate points and performs 
al
ulationswith respe
t to every previously evaluated point to 
he
k for shadowing and slope to agoal value at the 
andidate point. To review details of the algorithm, see Se
tion 2.7.



CHAPTER 6. DADAT SEARCH 135Algorithm 26 DADAT Iterative Re�nement with Strong Pruning, Node Ordering,Upper Bound, and Information-Based Dis
retizationDADAT-IR-SPNOUB-IB(rootNode, initialDelay, re�nementLimit,upperBound , sampleVe
tor). Input: root node,initial list of bran
hing times,limit on number of re�nement iterations,upper bound on solution 
ost,ve
tor of samples for ea
h possible a
tion parameter region.Output: goal node with 
ost beneath upper bound if found,best leaf node found otherwiseglobalUpperBound  upperBoundglobalGoalFound  falseglobalBestNode  nullre�nement  1while (not globalGoalFound and not re�nement > re�nementLimit) doDADAT-DFS-SPNOUB-IB(rootNode, initialDelay=re�nement,re�nement, sampleVe
tor)re�nement  re�nement + 1return globalBestNodeAlgorithm 27 DADAT Depth-First Sear
h with Strong Pruning, Node Ordering,Upper Bound, and Information-Based Dis
retizationDADAT-DFS-SPNOUB-IB(node, delay, depthLimit , sampleVe
tor). Input: sear
h node,simulation delay,depth of sear
h below node, andve
tor of samples for ea
h possible a
tion parameter region.Output: exa
t or lower bound value through nodeif (isGoal(node)) thenglobalGoalFound  trueglobalBestNode  nodereturn f(node)if (depthLimit = 0 or legalMoveRegions(node) = null) thenif (f(node) < f(globalBestNode)) thenglobalBestNode  nodereturn f(node)forea
h move region r[i℄ of legalMoveRegions(node) doinit-IB-Optimizer(optimizer[i℄ , r[i℄ , sampleVe
tor[r[i℄.index℄, globalTargetValue)fmoveChoi
e[i℄, 
hild[i℄g  IB-NextChild(node, optimizer[i℄ , delay)return DADAT-DFS-SPNOUB-IB-expand(node, optimizer , moveChoi
e,
hild , delay)
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Algorithm 28 IB-NextChild Pro
edure for Algorithms 27 and 29IB-NextChild(node, optimizer , delay). Input: parent node,information-based optimizer for move region, andsimulation delay.Output: 
hosen move parameters, andbest next 
hild node to expand a

ord to info-based optimization. nextChoi
e returns null when optimizer sample limit is rea
hedmoveChoi
e  nextChoi
e(optimizer[i℄)if (not moveChoi
e = null) thenmove  
reateMove(optimizer.region.index , moveChoi
e)
hild  wait(makeMove(
lone(node), move), delay)else
hild  nullreturn fmoveChoi
e, 
hildg
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Algorithm 29 Child Expansion Pro
edure for Algorithm 27DADAT-DFS-SPNOUB-IB-expand(node, optimizer , moveChoi
e, 
hild , delay). Input: 
urrent node,information-based optimizers for move regions,
andidate move 
hoi
es for move regions,asso
iated 
hild 
hoi
es for move regions, andsimulation delay.Output: goal node with 
ost beneath upper bound if found,best leaf node found otherwisenextBestF  1
hildNum  -1forea
h 
hild[i℄ doif (not 
hild[i℄ = null and f(
hild[i℄) < nextBestF ) thennextBestF  f(
hild[i℄)
hildNum  idone  
hildNum = -1fMin  1while (not done and not globalGoalFound) do. Do not expand a node with f-value ex
eeding the global upper boundif (nextBestF > globalUpperBound) then. If pruned, use f-value as return valuereturnValue  nextBestFelsereturnValue  DADAT-DFS-SPNOUB-IB(
hild[
hildNum℄, delay,depthLimit � 1)if (returnValue < fMin) thenfMin  returnValueaddData(optimizer[
hildNum℄ , moveChoi
e[i℄, returnValue)fmoveChoi
e[
hildNum℄, 
hild[
hildNum℄g IB-NextChild(node, optimizer[
hildNum℄ , delay)nextBestF  1
hildNum  -1forea
h 
hild[i℄ doif (not 
hild[i℄ = null and f(
hild[i℄) < nextBestF ) thennextBestF  f(
hild[i℄)
hildNum  idone  
hildNum = -1return fMin



CHAPTER 6. DADAT SEARCH 138Multidimensional information-based optimization has greater 
omputational 
om-plexity than that of the one dimensional 
ase be
ause of the 
he
k for shadowing. Thehigh 
omputational overhead expended in the intelligent sele
tion of a
tions for sear
houtweighed the bene�t of the intelligent sele
tion for our real-time problem. However,this algorithm may prove useful in problem domains with smaller bran
hing fa
torswhere intelligent sampling has a high payo� in sear
h eÆ
ien
y or solution quality.6.5 DADAT Iterative Re�nement with DispersedA
tion Dis
retizationWe have seen that random sampling is 
omputationally inexpensive, yet the sam-pling is inferior to the given a
tion dis
retization for the SADAT Submarine ChannelProblem. We have also seen that information-based optimization makes intelligent
hoi
es, yet the 
omputational 
omplexity of information-based optimization makesit unsuitable for this real-time problem domain. We are presented with a tradeo� be-tween 
omputational eÆ
ien
y and the utility of su
h 
omputation. One would desirea 
ompromise between the strengths of random and information-based dis
retizationwhi
h would e
ho the intuition behind the 
hoi
e of the SADAT dis
retization withoutin
urring su
h 
omputational 
ost for ea
h node expansion.In seeking a 
ompromise, we note that information-based minimization of a �nite-valued fun
tion with a target value of �1 will yield a set of points, ea
h of whi
h is asfar as possible from the previous points. See Figure 6.1. If one were to perform su
han optimization for a 
ir
ular area with the �rst point on the edge of the 
ir
le, these
ond point would be dire
tly a
ross the 
ir
le. The third and fourth points wouldbe dire
tly a
ross from ea
h other rotated 90 degrees from the �rst and se
ond points.The �fth point would be farthest from the previous four in the 
enter. The followingfour points would be 
hosen in positions rotated 45 degrees from the �rst four. Thefollowing eight would be 
hosen at 
enters of 
ir
les 
ir
ums
ribing triangles formedby the 
enter point and 
losest pairs of edge points.Given a starting point on the edge of the 
ir
ular move region, the �rst 17 points
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Figure 6.1: Information-Based Optimization point 
hoi
es for a �nite values and anin�nite target, 
on�ned to a 
ir
ular regionof information based minimization with a target of �1 look remarkably like theSADAT a
tion dis
retization. One needs only to slightly in
rease the speeds of thehalf-speed moves and rotate their headings 22.5 degrees. The point here is that theintuitive 
hoi
e of the SADAT a
tion dis
retization e
hoes a mathemati
ally well-founded 
hoi
e of information-based optimization with an in�nite target.If we 
ould have our algorithm dynami
ally and eÆ
iently 
ompute a dis
retiza-tion with points as far away from ea
h other as possible, we would expe
t mu
himprovement. While a detailed investigation of su
h te
hniques is beyond the s
opeof this dissertation, we have implemented a simple point dispersion te
hnique basedon simulating repulsive ele
tri
al for
es.The basi
 idea of \dispersed" dis
retization is to take a number of randomlysampled points from the a
tion region and simulate them as if they were point 
hargesmutually repelling ea
h other with for
e proportional to the inverse square of theirdistan
e. The point dispersion algorithm pseudo
ode is given in Algorithm 30. We usea repulsion fa
tor of 0.008 and a repulsion fa
tor de
ay of 0.93 for 20 iterations. Thesevalues were 
hosen empiri
ally based on a small number of trials with the submarinea
tion region. In future work, we would desire these dispersion parameters to berapidly self-adapting to the size of the region and the number of sampled points.In pseudo
ode Algorithms 31{32, we present a variation on SADAT Iterative



CHAPTER 6. DADAT SEARCH 140Algorithm 30 Dispersed Dis
retizationdisperse-points(region, samples, weight , de
ay, iterations). Input: move parameter region,number of points to sample,weight of 
hange for �rst iteration,de
ay of 
hange for following iterations,number of iterations.Output: an array of dispersed points within the regionfor i  1 to samples dox[i℄  randomPoint(region)for i  1 to iterations dofor j  1 to samples dodx[j℄  0for k  1 to j dodi�eren
e x[k℄ � x[j℄distan
e qx[j℄2 + x[k℄2dx[j℄  dx[j℄ � di�eren
e=(distan
e3)dx[k℄  dx[j℄ + di�eren
e=(distan
e3)for j  1 to samples dodx[j℄  weight � dx[j℄x[j℄  x[j℄ + dx[j℄if (not inRegion(x[j℄ , region)) then. Reassign to 
losest point on region border
ontainInRegion(x[j℄ , region)weight  weight � de
ayreturn xRe�nement with Strong Pruning, Node Ordering, and Upper Bound (x 5.5) wherewe lazily 
ompute dispersed dis
retization for move regions. That is, as a movedis
retization is needed, we look to a list of dis
retizations indexed by region. Ifa dis
retization has not yet been 
omputed, we 
ompute it, otherwise we use thepre
omputed global dis
retization for that move region.Using this dispersed dis
retization, we obtain ex
ellent results for the 10-ShipDADAT Submarine Channel Problem as shown in Table 6.3. As before, we notethat good performan
e requires the time horizon parameter to be suÆ
iently high.Parti
ularly surprising is the fa
t that the results are better than those with the givenSADAT dis
retization.Looking over a number of dispersed dis
retizations, one qui
kly noti
es that more
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Algorithm 31 DADAT Iterative Re�nement with Strong Pruning, Node Ordering,Upper Bound, and Random Dis
retizationDADAT-IR-SPNOUB-Dispersed(rootNode, initialDelay, re�nementLimit ,upperBound , sampleVe
tor ,dispersionWeight, dispersionDe
ay,dispersionIterations). Input: root node,initial list of bran
hing times,limit on number of re�nement iterations,upper bound on solution 
ost,ve
tor of samples for ea
h possible a
tion parameter region,weight of 
hange for �rst dispersion iteration,de
ay of 
hange for following dispersion iterations,number of dispersion iterations.Output: goal node with 
ost beneath upper bound if found,best leaf node found otherwiseglobalUpperBound  upperBoundglobalGoalFound  falseglobalBestNode  nullre�nement  1while (not globalGoalFound and not re�nement > re�nementLimit) doDADAT-DFS-SPNOUB-Dispersed(rootNode, initialDelay=re�nement,re�nement, sampleVe
tor ,dispersionWeight,dispersionDe
ay,dispersionIterations)re�nement  re�nement + 1return globalBestNode
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h with Strong Pruning, Node Ordering,Upper Bound, and Dispersed Dis
retizationDADAT-DFS-SPNOUB-Dispersed(node, delay, depthLimit , sampleVe
tor ,dispWeight , dispDe
ay, dispIterations). Input: sear
h node, simulation delay, depth of sear
h below node,ve
tor of samples for ea
h possible a
tion parameter region,weight of 
hange for �rst dispersion iteration,de
ay of 
hange for following dispersion iterations,number of dispersion iterationsif (isGoal(node)) thenglobalGoalFound  trueglobalBestNode  nodereturnif (depthLimit = 0 or legalMoveRegions(node) = null) thenif (f(node) < f(globalBestNode)) thenglobalBestNode  nodereturn
hildCount  0forea
h move region r[i℄ of legalMoveRegions(node) doindex  r[i℄.indexif (dispersedMoves[index℄ = null) thendispersedPoints disperse-points(r[i℄ , sampleVe
tor[index℄, dispWeight ,dispDe
ay, dispIterations)for j  1 to sampleVe
tor[index℄ dodispersedMove[index℄[j℄  
reateMove(index , dispersedPoint[j℄)for j  1 to sampleVe
tor[index℄ do
hildCount  
hildCount + 1
hild[
hildCount℄ wait(makeMove(
lone(node), dispersedMove[index℄[j℄),delay)Sort 
hild[i℄ in in
reasing order of f(
hild[i℄)i  1done  falsewhile (not done and not globalGoalFound) do. Do not expand a node with f-value ex
eeding the global upper boundif (f(
hild[i℄) > globalUpperBound) thendone  trueelseDADAT-DFS-SPNOUB-Dispersed(
hild[i℄ , delay , depthLimit � 1)i  i + 1if (i > 
hildCount) thendone  truereturn



CHAPTER 6. DADAT SEARCH 143points are repelled to the edge than in the given SADAT dis
retization. Althoughnot a probable 
on�guration, any number of points pla
ed at even intervals aroundthe edge would be in equilibrium. With repulsion parameters given above, it wastypi
al to see 12 or more points along the edge of the 
ir
le with 5 or fewer pointsdispersed internally. As noted in the previous dis
ussion, the extreme parametersrepresented by the edge of the 
ir
ular a
tion region are more likely to appear inoptimal solutions. We hypothesize that having extra edge a
tion 
hoi
es aids in�nding better approximations to optimal solutions.Furthermore, in this problem domain, sear
hes of faster submarine traje
tories (i.e.with dis
retizations having more maximal velo
ities) will have lesser sear
h depthsto solutions if su
h speedy solution traje
tories exist. Sin
e sear
h depth a�e
tssear
h time 
omplexity exponentially, we likely bene�t from a dis
retization withmore maximal velo
ity values.Time Time to Goal Cost to GoalHorizon Results % Goal Min Avg Max Min Avg Max Nodes/Se
4.20 100 0 N/A N/A N/A N/A N/A N/A 911.984.83 100 92 0.04 1.32 10.07 4.32 4.69 4.83 1,107.765.46 100 97 0.04 0.57 10.06 4.27 5.09 5.46 829.246.09 100 98 0.05 0.78 9.94 4.27 5.52 6.09 694.126.72 100 98 0.06 0.68 4.04 4.30 5.94 6.72 591.837.35 100 100 0.03 1.33 10.06 4.20 6.48 7.35 539.47Table 6.3: Results for DADAT Iterative Re�nement with Dispersed A
tion Dis
retiza-tion6.6 DADAT Iterative Re�nement with Dispersed�-RBFSIn this se
tion, we apply dispersed dis
retization to SADAT Iterative Re�nementwith �-RBFS to 
reate another DADAT sear
h algorithm we 
all DADAT Iterative



CHAPTER 6. DADAT SEARCH 144Re�nement with Dispersed �-RBFS. The algorithm is given in pseudo
ode in Algo-rithms 33{34.Algorithm 33 DADAT Iterative Re�nement with � - Re
ursive Best-First Sear
hand Dispersed Dis
retizationDADAT-IR-eRBFS-dispersed(rootNode, bound , initialDelay, espilon,re�nementLimit , sampleVe
tor ,dispWeight , dispDe
ay, dispIterations). Input: root node,upper bound on solution 
ost,initial simulation delay,epsilon minimum bound in
rement,limit on number of re�nement iterations,ve
tor of samples for ea
h possible a
tion parameter region,weight of 
hange for �rst dispersion iteration,de
ay of 
hange for following dispersion iterations,number of dispersion iterations.Output: goal node if solution found, null if notgoalNode  nullre�nement  1while (goalNode = null and not re�nement > re�nementLimit) doDADAT-eRBFS-dispersed(rootNode, f(rootNode), bound , initialDelay=re�nement ,espilon, sampleVe
tor , dispWeight , dispDe
ay,dispIterations)re�nement  re�nement + 1return goalNodeThe quality of the results for the 10-Ship DADAT Submarine Channel Problemare good, but not so good as DADAT Iterative Re�nement with Dispersed A
tionDis
retization, Strong Pruning, Node Ordering, and Upper Bound. However, thisalgorithm 
ommends itself for use where f 0 is not monotoni
, or where a good timehorizon is not known. Consider the broad range of initial delay parameters over whi
hwe have good results in Table 6.4. The parameters for dispersed dis
retization wereas follows: dispWeight = 0.008, dispDe
ay = 0.93, dispIterations = 20,To again see how the dispersed dis
retization is an improvement over the randomlyrotated given dis
retization of the SADAT version of the problem, 
onsider the resultsof Table 6.5. For the same problems, the dispersed dis
retization in
reases the numberof solutions found by about 33%.
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Initial Time to Goal Cost to GoalDelay Results % Goal Min Avg Max Min Avg Max Nodes/Se
1.00 100 76 0.01 1.89 9.50 4.32 7.71 9.53 491.392.00 100 71 0.02 1.61 9.37 5.02 7.77 9.65 490.553.00 100 74 0.03 1.89 8.10 4.31 7.71 9.63 502.994.00 100 69 0.04 1.89 8.91 5.70 7.94 9.77 491.304.20 100 72 0.01 1.82 8.77 4.46 8.16 10.00 454.784.83 100 77 0.03 3.10 9.56 4.70 8.07 9.84 471.745.46 100 70 0.03 2.80 9.92 4.29 8.15 9.98 461.756.09 100 69 0.05 2.45 9.86 4.31 7.98 9.98 465.636.72 100 73 0.02 3.01 10.04 4.20 8.07 9.98 448.347.35 100 68 0.04 2.93 9.21 4.89 8.46 9.94 453.53Table 6.4: Results for DADAT Iterative Re�nement with Dispersed �-RBFS
Initial Time to Goal Cost to GoalDelay Results % Goal Min Avg Max Min Avg Max Nodes/Se
4.20 100 47 0.06 2.76 8.78 5.95 8.18 9.80 477.434.83 100 34 0.04 3.67 9.51 6.17 8.20 9.96 460.035.46 100 39 0.17 2.69 7.57 5.58 8.26 10.00 464.326.09 100 38 0.22 5.31 10.02 5.53 8.11 9.99 456.966.72 100 33 0.03 2.97 9.53 6.00 8.25 9.82 452.577.35 100 40 0.17 4.94 9.99 5.95 8.16 9.95 448.07Table 6.5: Results for SADAT Iterative Re�nement with �-RBFS and RandomlyRotated A
tion Dis
retization
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ursive Best-First Sear
h with Dispersed Dis
retizationDADAT-eRBFS-dispersed(node, nodeF , bound , delay , espilon, sampleVe
tor ,dispWeight , dispDe
ay, dispIterations). Input: node, 
alling stored sear
h value of node, lo
al 
ost upper bound,simulation delay, epsilon minimum bound in
rement,ve
tor of samples for ea
h possible a
tion parameter region,weight of 
hange for �rst dispersion iteration,de
ay of 
hange for following dispersion iterations,number of dispersion iterations.Output: return stored sear
h value of nodeif (f(node) > bound) thenreturn f(node)if (isGoal(node)) thengoalNode  nodeexit algorithmif (numOfChildren(node) = 0) thenreturn 1forea
h move region r[i℄ of legalMoveRegions(node) doindex  r[i℄.indexif (dispersedMoves[index℄ = null) thendispersedPoints  disperse-points(r[i℄ , sampleVe
tor[index℄, dispWeight ,dispDe
ay, dispIterations)for j  1 to sampleVe
tor[index℄ dodispersedMove[index℄[j℄  
reateMove(index , dispersedPoint[j℄)for j  1 to sampleVe
tor[index℄ do
hildCount  
hildCount + 1
  wait(makeMove(
lone(node), dispersedMove[index℄[j℄), delay)if (f(node) < nodeF ) then
F  max(nodeF , f(
))else
F  f(
)insert(heap, 
, 
F )f
, 
Fg  extra
tMin(heap)while (
F � bound and 
F <1) do. The new lo
al upper bound must in
rease by at least epsilon.if (
hildCount > 1) then
F  max(DADAT-eRBFS-dispersed(
, 
F , min(bound , minValue(heap))),
F + epsilon)else
F  max(DADAT-eRBFS-dispersed(
, 
F , bound), 
F + epsilon)insert(heap, 
, 
F )f
, 
Fg  extra
tMin(heap)return 
F
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retization parameters were tuned a
ross several runs. While the
hosen dispersed dis
retization parameters were reasonably well 
hosen for the sub-marine a
tion parameter region, they would obviously not be generally suited for allregions one might en
ounter. In future work, it would be good to have su
h parame-ters be adaptively tuned mu
h as step size is tuned in lo
al optimization. If one 
ouldreliably get 
onvergen
e to a good dispersion, then dispersion parameters 
ould beremoved from these algorithms and their use would be simpli�ed.6.7 Con
lusionsIn this 
hapter, we gave formal de�nitions of DADAT Hybrid System Games and DA-DAT Hybrid System Sear
h Problems. We de�ned the DADAT Submarine ChannelProblem as the SADAT Submarine Channel problem without a given a
tion dis-
retization. The submarine instead is allowed any heading and any speed up to itsmaximum speed.We then investigated means of augmenting SADAT sear
h te
hniques of the previ-ous 
hapter su
h that a
tion dis
retizations are performed dynami
ally. We observedthat the per
entage of solutions found for random dis
retization is 
omparable tothose a
hieved with SADAT a
tion dis
retization when headings are uniformly ro-tated by a random angle. However, 
ost to goal of su
h solutions is in
reased. This isdue to the fa
t that optimal submarine path solutions often involve extreme values,espe
ially full speed. The random dis
retization will, on average, have 
onsiderablyfewer a
tions near full speed than the SADAT dis
retization.We next observed the unsu

essful appli
ation of information-based optimizationto a
tion dis
retization. While making good de
isions in prin
iple, the overheadof performing a multidimensional information-based optimization at ea
h node is tooburdensome for this real-time task. Thus the 
omputational bene�t of more intelligentnode expansion is outweighed by the 
omputational 
ost of 
omputing su
h 
hoi
es.Between random dis
retization and information-based optimization based on soundmathemati
al prin
iples, we wished to �nd a 
ompromise: a dis
retization whi
hwould re
e
t informed 
hoi
es while being very simple to 
ompute. We observed that
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ase of information-based optimization, where the fun
tion is �nite-valuedand the target is in�nite, yields a dis
retization where ea
h point is as far away as pos-sible from pre
eding points. In fa
t, one su
h information-based optimization yieldsa dis
retization remarkably similar to the SADAT dis
retization we were given.Based on the extreme 
ase of information-based optimization, and imitating thenatural phenomenon of ele
trostati
 repulsion of \point" 
harges, we developed adispersion algorithm whi
h yielded dis
retizations with 
onsiderably better goal �nd-ing performan
e than was a
hieved with the given SADAT a
tion dis
retization withheadings uniformly rotated by a random angle.It should be noted that a good representation of the problem is ne
essary tothe su

ess of sear
h appli
ations. Two spe
i�
 
hara
teristi
s are of spe
ial note.First, one should keep the representation as simple as possible. Complex behaviorsneed not have 
omplex underlying de
isions, and keeping the dimensionality of a
tionparameter regions low is important given the limited sampling one 
an perform.Se
ond, one should represent the a
tion parameter regions in su
h a way as touniformly distribute parameters a

ording to likelihood of utility of su
h a
tions.For example, one 
ould represent possible submarine a
tions as a re
tangle withsides bounding possible headings and speeds. Compared to uniform sampling ofthe 
ir
ular representation, uniform sampling of the re
tangular representation givesgreater importan
e to moves with slower speeds. Of 
ourse, this issue 
ould also beavoided at the a
tion parameter representation level if we spe
ialize our dis
retizationmethods to vary importan
e of sampling over a
tion parameter regions.The main point is that at some level, one en
odes a notion of sampling importan
eover possible a
tion parameters. Choosing low dimensional a
tion parameter regionrepresentations whi
h uniformly distribute the likely importan
e of parameters isimportant in representing a problem for su

essful use with these te
hniques.In summary, if a good time horizon is known and the heuristi
 evaluation fun
-tion f 0 is known to be monotoni
, then among our algorithms, DADAT IterativeRe�nement with Strong Pruning, Node Ordering, Upper Bound, and Dispersed Dis-
retization is preferred. Otherwise, if one 
an provide a de
ent heuristi
 evaluation
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tion, then DADAT Iterative Re�nement with �-RBFS and Dispersed Dis
retiza-tion is preferred.Thus, we have introdu
ed a 
olle
tion of algorithms whi
h perform dynami
 dis-
retization of a
tion and a
tion timing in sear
h. There is mu
h yet to be done in thisarea, yet we hope that these �rst steps will bring Arti�
ial Intelligen
e and Controlresear
hers 
loser to fruitful 
ommon work.
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