

Outline

- Dudo Rules
- Regret and Counterfactual Regret
- Imperfect Recall Abstraction
- Counterfactual Regret Minimization (CFR)
 Difficulties
- Fixed-Strategy Iteration Counterfactual Regret Minimization (FSICFR)
- Results

Dudo

- Bluffing dice game
- Origin generally believed to be 15th c. Inca
- Many variants/names (Liar's Dice, Perudo, Bluff, Call My Bluff, Cacho, Cachito)
- Internationally popular
 - BoardGameGeek.com rank
 272/55074 (~top ½%), November
 10th, 2011

Dudo Overview

- Bluffing dice game for 2+ players
 - Each player rolls 5 dice concealed under cup
 - Players make successively bolder claims about all dice rolled until player challenges
 - Loser of challenge loses dice
 - Last player with dice wins

Dudo Claims

		1	•	1	••	1	••	1	:: 1	
1	•	2	•	2	••	2	••	2	∷ 2	
		3	•	3	••	3	••	3	∷ 3	
2	•	4	•	4	••	4	••	4	∷ 4	
		5	•	5	••	5	••	5	∷ 5	
3	•	6	•	6	••	6	••	6	∷ 6	
		7	•	7	••	7	••	7	∷ 7	

Dudo Rules

- Players each roll and privately view 5 dice concealed under a cup. 1s are wild.
- Players make successively greater claims until one challenges the previous claim with "Dudo!" (Sp. "I doubt it!"), all reveal dice, and:
 - More/less than claimed? Challenger/claimant loses dice according to difference.
 - Claim exactly correct? All others lose 1 die.
- The next round begins with challenge winner.
- The last player with dice wins.

Regret

- Rock, Paper, Scissors (a.k.a. Roshambo)
- +1 win, 0 tie, -1 loss
- Losing choice results in regret of 1/2 for not choosing tie/win play.
- Hart & Mas-Colell Regret-Matching (2000):
 - Depart from current play with probabilities proportional to cumulative past regrets

Counterfactual Regret Example

- Input: realization weights
- Compute node strategy from normalized positive cumulative regret.
- Update avg. output strategy weighted by player realization weight.
- Recursively evaluate strategy to compute action values and node value.
- Compute counterfactual regret.
- Update cumulative regret weighted by opponent realization weight.

Counterfactual Regret Example

	p1	p2	
Realization Weights	0.5	0.25	
Player 1 Node:			
	a1	a2	a3
Cumulative Regret	20	-10	30
Positive Regret	20	0	30
Strategy	0.4	0	0.6
Cumulative Strategy +=	0.2	0	0.3
Player 1 Node Actions:	1	2	3
p1'	0.2	0	0.3
p2'	0.25	0.25	0.25
v1	40	-8	20
Node Value	28		
Action Regrets	12	-36	-8
Counterfactual Regrets	3	-9	-2
Old Cumulative Regret	20	-10	30
New Cumulative Regret	23	-19	28

• Input: realization weights

- Compute node strategy from normalized positive cumulative regret.
- Update avg. output strategy weighted by player realization weight.
- Recursively evaluate strategy to compute action values and node value.
- Compute counterfactual regret.
- Update cumulative regret weighted by opponent realization weight.

Dudo Information Sets

- Information set all game states consistent with what you know
 - Dudo: Your dice, the number of opponent dice, the claim history
 - 2-player Dudo info sets:294,021,177,291,188,232,192
- Imperfect recall abstraction
 - Remember up to the last m claims
 - $-m = 3 \rightarrow 21,828,536$ abstract info. sets
 - Abstraction + CFR can lead to pathological behavior, but not apparently in this case.

Problems in applying CFR to Dudo

 Even with imperfect recall, the exponentially growing paths through possible states make application infeasible:

Dice	1	2	3	4	5
1	13	49	1551	97210	6179541
2	26	1507	99019	6310784	-
3	1509	98483	6211111	-	-
4	97611	6265326	-	-	-
5	6290658	1	1	1	-

(b) Time (ms) per single CFR training iteration.

Insight

- CFR w/ abstracted info. sets,
 - node visits grow exponentially with depth.
 - strategies and regrets change each node visit

- We have restructured the algorithm to make a single dynamic-programming style
 - forward pass computing strategies and accumulating realization weights, and
 - backward pass computing utilities and accumulating regrets.
- By fixing-strategies throughout the forward pass, we can use the same regret-matching approach, yet reduce exponential complexity to linear.

2-versus-2 Dice Training

Fig. 3. FSICFR vs. CFR win rates during 2-vs.-2 dice training.

Time (ms) per Training Iteration

		4	TO .
(In	mor	ant	100
V	וטעע	nent	DICC

Dice	1	2	3	4	5
1	0.3	1.0	2.1	4.9	9.9
2	0.7	2.0	4.7	9.7	18.7
3	2.1	4.7	9.2	18.6	34.4
4	5.0	9.8	18.7	32.4	55.3
5	10.0	18.9	34.8	56.1	94.5

⁽a) Time (ms) per FSICFR training iteration averaged over 1000 training iterations.

Opponent Dice

Dice	1	2	3	4	5
1	13	49	1551	97210	6179541
2	26	1507	Sept and Sept towards	6310784	=
3	1509	98483	6211111	-	_
4	97611	6265326	_	-	_
5	6290658	-	_	-	-

(b) Time (ms) per single CFR training iteration.

Fig. 4. Time (ms) per training iteration.

Varying Imperfect Recall

Fig. 5. 1-vs.-1 die FSICFR win rates vs. optimal strategy varying action recall imperfection.

Summary

- Imperfect recall abstraction brings Dudo information sets from 2.9 x 10²⁰ to 2.2x10⁷.
- Even so, CFRs exponential growth through depths of claim sequences proves infeasible.
- FSICFR: Holding strategies fixed through dynamic-programming-style forward and backward pass allows efficient CFR training.
- Any extensive game tree with significant paths to the same (abstracted) info. sets benefits.