RBFS (node: N, value: F(N), bound: B)
IF f(N)>B, RETURN f(N)
IF N is a goal, EXIT algorithm
IF N has no children, RETURN infinity
FOR each child Ni of N,
IF f(N)<F(N), F[i] :=
MAX(F(N),f(Ni))
ELSE F[i] := f(Ni)
sort Ni and F[i] in increasing order of F[i]
IF only one child, F[2] := infinity
WHILE (F[1] <= B and F[1] < infinity)
F[1] := RBFS(N1, F[1],
MIN(B, F[2]))
insert Ni and F[1] in
sorted order
RETURN F[1]
Korf illustrated the workings of this algorithm with a
binary tree where f(N) =
the depth of node N. What follows is a brief, structured
description of how the algorithm works in this case. It is best to try to work the algorithm on your own on paper and
use this as a reference to check your work. Nodes in the binary tree are named A, B, C,
… from left-to-right, top-to-bottom.
Assume the tree is infinite and has no goal. Note that the stored value F(N)
is different from f(N). When sorted children are listed (e.g. “B(1)
C(1)”), the number inside the parentheses is the stored
value. Recursive calls are indented;
the first line is the initial call on the root.
RBFS(A, 0, 4)
f(A)=F(A), so F(B)=f(B)=1,
F(C)=f(C)=1
Sorted children: B(1) C(1)
F(B)< 4,
so
RBFS(B,
1, 1)
f(B)=F(B),
so F(D)=f(D)=2, F(E)=f(E)=2
Sorted
children: D(2) E(2)
F(D)>1,
so return 2
F(B)=2
Sorted children: C(1) B(2)
F(C)< 4,
so
RBFS(C,
1, 2)
f(C)=F(C),
so F(F)=f(F)=2, F(G)=f(G)=2
Sorted
children: F(2) G(2)
F(F)<=2,
so
RBFS(F,
2, 2)
…
search F’s children to 2 returning min cost beyond …
return
3
F(F)=3
Sorted
children: G(2) F(3)
F(G)<=2,
so
RBFS(G,
2, 2)
…
search G’s children to 2 returning min cost beyond …
return
3
F(G)=3
Sorted
children: F(3) G(3)
F(F)>2,
so return 3
F(C)=3
Sorted children: B(2) C(3)
F(B)< 4,
so
RBFS(B,
2, 3)
f(B)<F(B),
so F(D)=MAX(F(B),f(D))=2,
F(E)=MAX(F(B),f(E))=2
Sorted
children: D(2) E(2)
F(D)<=3,
so
RBFS(D, 2, 2)
…
search D’s children to 2 returning min cost beyond …
return 3
F(D)=3
Sorted
children: E(2) D(3)
F(E)<=3,
so
RBFS(E, 2, 3)
…
search E’s children to 3 returning min cost beyond …
return 4
F(E)=4
Sorted children: D(3)
E(4)
F(D)<=3, so
RBFS(D, 3, 3)
…
search D’s children to 3 returning min cost beyond …
return 4
F(D)=4
Sorted children: E(4)
D(4)
F(E)>3, so
return 4
F(B)=4
Sorted children: C(3) B(4)
F(C)< 4,
so
RBFS(C,
3, 4)
… search C’s
children to 4 returning min cost beyond …
return 5
F(C)=5
Sorted children: B(4) C(5)
F(B)< 4,
so
RBFS(B,
4, 5)
… search B’s
children to 5 returning min cost beyond …
return 6
F(B)=6
Sorted children: C(5) B(6)
… and so on …