
Todd W. Neller
Gettysburg College

 Specification: grid size,
start state (square),
goal state, jump
numbers for each non-
goal state.

 Jump number: Move
exactly that many
squares up, down,
left, right. (Not
diagonally.)

 Objectives:
◦ Find a path from start to

goal.
◦ Find the shortest of

these paths.

 http://modelai.gettysburg.edu/2010/rjmaze
 Preliminaries:
◦ Maze Representation

 Uninformed Search:
◦ Maze Evaluation
◦ Maze Evaluation II

 Stochastic Local Search:
◦ Hill Descent
◦ Hill Descent with Random Restarts
◦ Hill Descent with Random Uphill Steps
◦ Simulated Annealing

 Machine Learning
◦ Restart Bandit
◦ Restart SARSA

http://modelai.gettysburg.edu/2010/rjmaze�
http://modelai.gettysburg.edu/2010/rjmaze/random.html�
http://modelai.gettysburg.edu/2010/rjmaze/evaluation.html�
http://modelai.gettysburg.edu/2010/rjmaze/evaluation2.html�
http://modelai.gettysburg.edu/2010/rjmaze/descent.html�
http://modelai.gettysburg.edu/2010/rjmaze/descent2.html�
http://modelai.gettysburg.edu/2010/rjmaze/descent3.html�
http://modelai.gettysburg.edu/2010/rjmaze/annealing.html�
http://modelai.gettysburg.edu/2010/rjmaze/bandit.html�
http://modelai.gettysburg.edu/2010/rjmaze/sarsa.html�

 Maze Representation
 Problem: Generate and

print a random n-by-n
Rook Jumping Maze (5
≤ n ≤ 10) where there
is a legal move (jump)
from each non-goal
state.

http://modelai.gettysburg.edu/2010/rjmaze/random.html�

 Maze Evaluation
◦ Problem: [Maze Representation step] Then, for

each cell, compute and print the minimum number
of moves needed to reach that cell from the start
cell, or "--" if no path exists from the start cell, i.e.
the cell is unreachable.
◦ Breadth-first search
◦ Print objective function: negative goal distance, or a

large positive number if goal is unreachable.

http://modelai.gettysburg.edu/2010/rjmaze/evaluation.html�

 Maze design as search
◦ Search space of possible maze designs for one that

minimizes objective function.
 Stochastic Local Search (SLS):
◦ Hill Descent
◦ Hill Descent with Random Restarts
◦ Hill Descent with Random Uphill Steps
◦ Simulated Annealing

 Additional resources for teaching SLS:
http://cs.gettysburg.edu/~tneller/resources/sls/index.html

http://modelai.gettysburg.edu/2010/rjmaze/descent.html�
http://modelai.gettysburg.edu/2010/rjmaze/descent2.html�
http://modelai.gettysburg.edu/2010/rjmaze/descent3.html�
http://modelai.gettysburg.edu/2010/rjmaze/annealing.html�
http://cs.gettysburg.edu/~tneller/resources/sls/index.html�

 “I really hate this damned machine; I wish that they would
sell it. / It never does quite what I want but only what I tell
it.” - Anonymous

 Our maze designs are only as good as our obj. function.
 While maximizing shortest path is a simple starting point for

maze design, we can do better.
 Maze Evaluation II

 Problem: Define a better maze objective function and argue
why it leads to improved maze quality.

 Features: Black/white holes, start/goal positions, shortest
solution uniqueness, forward/backward branching, same-jump
clusters, etc.

 ICCG’10 paper: Rook Jumping Maze Design Considerations

http://modelai.gettysburg.edu/2010/rjmaze/evaluation2.html�

 SLS is an anytime algorithm
◦ More search iterations  same/better maze design
◦ When generating many mazes, how does one

balance utility of computational time versus utility
of maze quality?

 Restart Bandit
◦ n-armed bandit MDP with # iterations as arms
◦ ε-greedy/softmax strategy for action selection

 Restart SARSA
◦ Use SARSA to map # iterations since restart and

best maze evaluation to actions {GO, RESTART}

http://modelai.gettysburg.edu/2010/rjmaze/bandit.html�
http://modelai.gettysburg.edu/2010/rjmaze/bandit.html�
http://modelai.gettysburg.edu/2010/rjmaze/sarsa.html�

 Many variations are possible to avoid
plagiarism:
◦ Use different regular tilings, e.g. triangular or

hexagonal.
◦ Topological constraints may be added (e.g.

impassable walls/tiles) or removed (e.g. toroidal
wrap-around).
◦ Movement constraints may be varied as well.
 Add diagonal moves  Queen Jumping Maze
 Abbott's "no-U-turn" rule increases state complexity

 The best puzzle assignments have a high fun
to source-lines-of-code (SLOC) ratio:
◦ RJMs are fun, novel, interesting mazes with simple

representation and rules.
◦ RJMs are particularly well suited to application of

graph algorithms (evaluation) and stochastic local
search (design).

 Everything you’d ever want to know about
RJMs:
◦ http://tinyurl.com/rjmaze

 Questions?

http://tinyurl.com/rjmaze�

	Rook Jumping Maze Generation�for AI Education
	Rook Jumping Maze
	The Assignments
	Preliminaries
	Uninformed Search
	Stochastic Local Search
	As You Wish…
	Machine Learning
	Variations
	Conclusion

