Perspectives on Perfect and Practical Play of Pig

Todd W. Neller
Gettysburg College

tinyurl.com/piggame
Sow What’s This All About?

- Introduction to the Dice Game “Pig”
- Odds and Ends: Playing to Score
- Perfect Play: Playing to Win
 - “Piglet” example
 - Value Iteration
- Practical Play: How we can play well
The first player to reach 100 points wins.

On a turn, a player rolls a die repeatedly until:

- the player holds, scoring the sum of the rolls ("turn total"), or
- a 1 ("pig") is rolled, and there is no score change.

Example turns:

- roll 4, roll 5, roll 2, hold \rightarrow add $4 + 5 + 2 = 11$ to score
- roll 3, roll 6, roll 6, roll 1 \rightarrow score remains the same
Pig Preliminaries

- Player’s decision is always to *roll/hold*
 - *Roll* – possibly increase turn total, or lose it
 - *Hold* – definitely score current turn total
 - Pig is the simplest of a class of *jeopardy dice games*; ancestor of *Pass the Pigs*
- Hold at 20 - a simple policy that maximizes expected points per turn
Simple odds argument
- Roll until you risk more than you stand to gain.
- “Hold at 20”
 - 1/6 of time: -20 → -20/6
 - 5/6 of time: +4 (avg. of 2,3,4,5,6) → +20/6
Hold at 20?

- Is there a situation in which you wouldn’t want to hold at 20?
 - Your score: 99; you roll 2
 - Case scenario
 - you: 79 opponent: 99
 - Your turn total stands at 20
What’s Wrong With Playing to Score?

- It’s mathematically optimal!
- But what are we optimizing?
- Playing to score ≠ Playing to win
- Optimizing score gain per turn ≠ Optimizing probability of a win
Piglet

- Simpler version of Pig with a coin
- Object: First to score 10 points
- On your turn, flip until:
 - You flip tails, and score NOTHING.
 - You hold, and KEEP the # of heads.
- Even simpler: play to 2 points
What is the information I need to make a fully informed decision?

- My score
- The opponent’s score
- My “turn total”
A Little Notation

- $P_{i,j,k}$ – probability of a win if
 * i = my score
 * j = the opponent’s score
 * k = my turn total
- Hold: $P_{i,j,k} = 1 - P_{j,i+k,0}$
- Flip: $P_{i,j,k} = \frac{1}{2}(1 - P_{j,i,0}) + \frac{1}{2} P_{i,j,k+1}$
Assume Rationality

- To make a smart player, assume a smart opponent.
- (To make a smarter player, know your opponent.)
- \(P_{i,j,k} = \max(1 - P_{j,i+k,0}, \frac{1}{2}(1 - P_{j,i,0} + P_{i,j,k+1})) \)
- Probability of win based on best decisions in any state
\[P_{0,0,0} = \max(1 - P_{0,0,0}, \frac{1}{2}(1 - P_{0,0,0} + P_{0,0,1})) \]

\[P_{0,0,1} = \max(1 - P_{0,1,0}, \frac{1}{2}(1 - P_{0,0,0} + P_{0,0,2})) \]

\[P_{0,1,0} = \max(1 - P_{1,0,0}, \frac{1}{2}(1 - P_{1,0,0} + P_{0,1,1})) \]

\[P_{0,1,1} = \max(1 - P_{1,1,0}, \frac{1}{2}(1 - P_{1,0,0} + P_{0,1,2})) \]

\[P_{1,0,0} = \max(1 - P_{0,1,0}, \frac{1}{2}(1 - P_{0,1,0} + P_{1,0,1})) \]

\[P_{1,1,0} = \max(1 - P_{1,1,0}, \frac{1}{2}(1 - P_{1,1,0} + P_{1,1,1})) \]
The Whole Story

\[P_{0,0,0} = \max(1 - P_{0,0,0}, \frac{1}{2}(1 - P_{0,0,0} + P_{0,0,1})) \]
\[P_{0,0,1} = \max(1 - P_{0,1,0}, \frac{1}{2}(1 - P_{0,0,0} + P_{0,0,2})) \]
\[P_{0,1,0} = \max(1 - P_{1,0,0}, \frac{1}{2}(1 - P_{1,0,0} + P_{0,1,1})) \]
\[P_{0,1,1} = \max(1 - P_{1,1,0}, \frac{1}{2}(1 - P_{1,0,0} + P_{0,1,2})) \]
\[P_{1,0,0} = \max(1 - P_{0,1,0}, \frac{1}{2}(1 - P_{0,1,0} + P_{1,0,1})) \]
\[P_{1,1,0} = \max(1 - P_{1,1,0}, \frac{1}{2}(1 - P_{1,1,0} + P_{1,1,1})) \]

These are winning states!
$P_{0,0,0} = \max(1 - P_{0,0,0}, \frac{1}{2}(1 - P_{0,0,0} + P_{0,0,1}))$

$P_{0,0,1} = \max(1 - P_{0,1,0}, \frac{1}{2}(1 - P_{0,0,0} + 1))$

$P_{0,1,0} = \max(1 - P_{1,0,0}, \frac{1}{2}(1 - P_{1,0,0} + P_{0,1,1}))$

$P_{0,1,1} = \max(1 - P_{1,1,0}, \frac{1}{2}(1 - P_{1,0,0} + 1))$

$P_{1,0,0} = \max(1 - P_{0,1,0}, \frac{1}{2}(1 - P_{0,1,0} + 1))$

$P_{1,1,0} = \max(1 - P_{1,1,0}, \frac{1}{2}(1 - P_{1,1,0} + 1))$

Simplified...
The Whole Story

\[
\begin{align*}
P_{0,0,0} &= \max(1 - P_{0,0,0}, \frac{1}{2}(1 - P_{0,0,0} + P_{0,0,1})) \\
P_{0,0,1} &= \max(1 - P_{0,1,0}, \frac{1}{2}(2 - P_{0,0,0})) \\
P_{0,1,0} &= \max(1 - P_{1,0,0}, \frac{1}{2}(1 - P_{1,0,0} + P_{0,1,1})) \\
P_{0,1,1} &= \max(1 - P_{1,1,0}, \frac{1}{2}(2 - P_{1,0,0})) \\
P_{1,0,0} &= \max(1 - P_{0,1,0}, \frac{1}{2}(2 - P_{0,1,0})) \\
P_{1,1,0} &= \max(1 - P_{1,1,0}, \frac{1}{2}(2 - P_{1,1,0}))
\end{align*}
\]

And simplified more into a hamsome set of equations...
\[P_{0,0,0} = \max(1 - P_{0,0,0}, \frac{1}{2}(1 - P_{0,0,0} + P_{0,0,1})) \]
\[P_{0,0,1} = \max(1 - P_{0,1,0}, \frac{1}{2}(2 - P_{0,0,0})) \]
\[P_{0,1,0} = \max(1 - P_{1,0,0}, \frac{1}{2}(1 - P_{1,0,0} + P_{0,1,1})) \]
\[P_{0,1,1} = \max(1 - P_{1,1,0}, \frac{1}{2}(2 - P_{1,0,0})) \]
\[P_{1,0,0} = \max(1 - P_{0,1,0}, \frac{1}{2}(2 - P_{0,1,0})) \]
\[P_{1,1,0} = \max(1 - P_{1,1,0}, \frac{1}{2}(2 - P_{1,1,0})) \]

\[P_{0,0,0} \text{ depends on } P_{0,0,1} \text{ depends on } P_{0,1,0} \text{ depends on } P_{0,1,1} \text{ depends on } P_{1,0,0} \text{ depends on } P_{0,1,0} \text{ depends on ...} \]
A System of Pigquations

Dependencies between non-winning states
How Bad Is It?

- The intersection of a set of bent hyperplanes in a hypercube
- In the general case, no known method (read: PhD research)
- Is there a method that works (without being guaranteed to work in general)?
 - Yes! Value Iteration!
Value Iteration

- Start out with some values (0’s, 1’s, random #’s)
- Do the following until the values converge (stop changing):
 - Plug the values into the RHS’s
 - Recompute the LHS values
- That’s easy. Let’s do it!
Value Iteration

\[P_{0,0,0} = \max(1 - P_{0,0,0}, \frac{1}{2}(1 - P_{0,0,0} + P_{0,0,1})) \]
\[P_{0,0,1} = \max(1 - P_{0,1,0}, \frac{1}{2}(2 - P_{0,0,0})) \]
\[P_{0,1,0} = \max(1 - P_{1,0,0}, \frac{1}{2}(1 - P_{1,0,0} + P_{0,1,1})) \]
\[P_{0,1,1} = \max(1 - P_{1,1,0}, \frac{1}{2}(2 - P_{1,0,0})) \]
\[P_{1,0,0} = \max(1 - P_{0,1,0}, \frac{1}{2}(2 - P_{0,1,0})) \]
\[P_{1,1,0} = \max(1 - P_{1,1,0}, \frac{1}{2}(2 - P_{1,1,0})) \]

- Assume \(P_{i,j,k} \) is 0 unless it’s a win
- Repeat: Compute RHS’s, assign to LHS’s
Initially, $P_{i,j,k} = 0$

$P_{0,0,0} = \max(1 - P_{0,1,0}, \frac{1}{2}(1 - P_{0,0,0} + P_{0,0,1}))$

$P_{0,0,1} = \max(1 - P_{0,1,0}, \frac{1}{2}(2 - P_{0,0,0}))$

$P_{0,1,0} = \max(1 - P_{1,0,0}, \frac{1}{2}(1 - P_{1,0,0} + P_{0,1,1}))$

$P_{0,1,1} = \max(1 - P_{1,1,0}, \frac{1}{2}(2 - P_{1,0,0}))$

$P_{1,0,0} = \max(1 - P_{0,1,0}, \frac{1}{2}(2 - P_{0,1,0}))$

$P_{1,1,0} = \max(1 - P_{1,1,0}, \frac{1}{2}(2 - P_{1,1,0}))$
Initially, $P_{i,j,k} = 0$

$P_{0,0,0} = \max(1 - 0, \frac{1}{2}(1 - 0 + 0))$

$P_{0,0,1} = \max(1 - 0, \frac{1}{2}(2 - 0))$

$P_{0,1,0} = \max(1 - 0, \frac{1}{2}(1 - 0 + 0))$

$P_{0,1,1} = \max(1 - 0, \frac{1}{2}(2 - 0))$

$P_{1,0,0} = \max(1 - 0, \frac{1}{2}(2 - 0))$

$P_{1,1,0} = \max(1 - 0, \frac{1}{2}(2 - 0))$
Initially, $P_{i,j,k} = 0$

$P_{0,0,0} = \max(1, \frac{1}{2}) = 1$

$P_{0,0,1} = \max(1, 1) = 1$

$P_{0,1,0} = \max(1, \frac{1}{2}) = 1$

$P_{0,1,1} = \max(1, 1) = 1$

$P_{1,0,0} = \max(1, 1) = 1$

$P_{1,1,0} = \max(1, 1) = 1$
Next, $P_{i,j,k} = 1$

\[
P_{0,0,0} = \max(1 - P_{0,0,0}, \frac{1}{2}(1 - P_{0,0,0} + P_{0,0,1}))
\]

\[
P_{0,0,1} = \max(1 - P_{0,1,0}, \frac{1}{2}(2 - P_{0,0,0}))
\]

\[
P_{0,1,0} = \max(1 - P_{1,0,0}, \frac{1}{2}(1 - P_{1,0,0} + P_{0,1,1}))
\]

\[
P_{0,1,1} = \max(1 - P_{1,1,0}, \frac{1}{2}(2 - P_{1,0,0}))
\]

\[
P_{1,0,0} = \max(1 - P_{0,1,0}, \frac{1}{2}(2 - P_{0,1,0}))
\]

\[
P_{1,1,0} = \max(1 - P_{1,1,0}, \frac{1}{2}(2 - P_{1,1,0}))
\]
Iteration 2

Next, \(P_{i,j,k} = 1 \)

\[
P_{0,0,0} = \max(1 - 1, \frac{1}{2}(1 - 1 + 1))
\]

\[
P_{0,0,1} = \max(1 - 1, \frac{1}{2}(2 - 1))
\]

\[
P_{0,1,0} = \max(1 - 1, \frac{1}{2}(1 - 1 + 1))
\]

\[
P_{0,1,1} = \max(1 - 1, \frac{1}{2}(2 - 1))
\]

\[
P_{1,0,0} = \max(1 - 1, \frac{1}{2}(2 - 1))
\]

\[
P_{1,1,0} = \max(1 - 1, \frac{1}{2}(2 - 1))
\]
Next, $P_{i,j,k} = 1$

$P_{0,0,0} = \max(0, \frac{1}{2}) = \frac{1}{2}$

$P_{0,0,1} = \max(0, \frac{1}{2}) = \frac{1}{2}$

$P_{0,1,0} = \max(0, \frac{1}{2}) = \frac{1}{2}$

$P_{0,1,1} = \max(0, \frac{1}{2}) = \frac{1}{2}$

$P_{1,0,0} = \max(0, \frac{1}{2}) = \frac{1}{2}$

$P_{1,1,0} = \max(0, \frac{1}{2}) = \frac{1}{2}$
Iteration 3

Next, $P_{i,j,k} = \frac{1}{2}$

$P_{0,0,0} = \max(1 - P_{0,0,0}, \frac{1}{2}(1 - P_{0,0,0} + P_{0,0,1}))$

$P_{0,0,1} = \max(1 - P_{0,1,0}, \frac{1}{2}(2 - P_{0,0,0}))$

$P_{0,1,0} = \max(1 - P_{1,0,0}, \frac{1}{2}(1 - P_{1,0,0} + P_{0,1,1}))$

$P_{0,1,1} = \max(1 - P_{1,1,0}, \frac{1}{2}(2 - P_{1,0,0}))$

$P_{1,0,0} = \max(1 - P_{0,1,0}, \frac{1}{2}(2 - P_{0,1,0}))$

$P_{1,1,0} = \max(1 - P_{1,1,0}, \frac{1}{2}(2 - P_{1,1,0}))$
Next, $P_{i,j,k} = \frac{1}{2}$

$P_{0,0,0} = \max(1 - \frac{1}{2}, \frac{1}{2}(1 - \frac{1}{2} + \frac{1}{2}))$

$P_{0,0,1} = \max(1 - \frac{1}{2}, \frac{1}{2}(2 - \frac{1}{2}))$

$P_{0,1,0} = \max(1 - \frac{1}{2}, \frac{1}{2}(1 - \frac{1}{2} + \frac{1}{2}))$

$P_{0,1,1} = \max(1 - \frac{1}{2}, \frac{1}{2}(2 - \frac{1}{2}))$

$P_{1,0,0} = \max(1 - \frac{1}{2}, \frac{1}{2}(2 - \frac{1}{2}))$

$P_{1,1,0} = \max(1 - \frac{1}{2}, \frac{1}{2}(2 - \frac{1}{2}))$
Next, $P_{i,j,k} = \frac{1}{2}$

$P_{0,0,0} = \max(\frac{1}{2}, \frac{1}{2}) = \frac{1}{2}$

$P_{0,0,1} = \max(\frac{1}{2}, \frac{3}{4}) = \frac{3}{4}$

$P_{0,1,0} = \max(\frac{1}{2}, \frac{1}{2}) = \frac{1}{2}$

$P_{0,1,1} = \max(\frac{1}{2}, \frac{3}{4}) = \frac{3}{4}$

$P_{1,0,0} = \max(\frac{1}{2}, \frac{3}{4}) = \frac{3}{4}$

$P_{1,1,0} = \max(\frac{1}{2}, \frac{3}{4}) = \frac{3}{4}$

This continues until values converge...
But That’s GRUNT Work!

- So have a computer do it, slacker!
- Not difficult – end of CS1 level
- Fast! Don’t blink – you’ll miss it
- Optimal play:
 - Compute the probabilities
 - Determine flip/hold from RHS max’s
 - (For our equations, always FLIP)
- Game to 10
- Play to Score: “Hold at 1”
- Play to Win:
Just like Piglet, but more possible outcomes

\[P_{i,j,k} = \max(1 - P_{j,i+k,0}, \frac{1}{6}(1 - P_{j,i,0} + P_{i,j,k+2} + P_{i,j,k+3} + P_{i,j,k+4} + P_{i,j,k+5} + P_{i,j,k+6})) \]
Solving Pig

- 505,000 such equations
- Same simple solution method (value iteration)
- Potential Speedup: Solve groups of interdependent probabilities from game end backward
- So what does optimal play look like?
Pig Sow-lution
Pig Sow-lution
Probability Contours
Practical Play of Pig

- Whoa! That’s some funky alien landscape on that optimal policy!
- (scratches head) So I’m supposed to memorize that?
- Computing optimal play of Pig didn’t make me play optimally.
- How does one come up with practical policies for unaided human play?
Approximating Optimality

- KISS Principle: “Keep It Simple and Stupid.”
- Often, much learning benefit comes from attention to few, simple features.
- Observe the optimal policy and look for significant features of the roll/hold boundary.
- Try, try again.
- How does one evaluate simple policy ideas?
Given two policies (yours and optimal):

- set up a system of equations describing play,
- compute the probability of your winning going first/second, and
- average the win probabilities
Algorithm 1 Policy Comparison

For each \((i, j, k) \in S\), initialize \(P_{i,j,k}^A\) and \(P_{i,j,k}^B\) arbitrarily.

Repeat

\[
\Delta \leftarrow 0
\]

For each \((i, j, k) \in S\),

\[
p_1 \leftarrow \begin{cases}
\frac{1}{6} \left[(1 - P_{j,i,0}^B) + \sum_{r \in [2, 6]} P_{i,j,k+r}^A \right], & \text{if Roll}_{i,j,k}^A; \\
1 - P_{j,i,k,0}^B, & \text{otherwise.}
\end{cases}
\]

\[
p_2 \leftarrow \begin{cases}
\frac{1}{6} \left[(1 - P_{j,i,0}^A) + \sum_{r \in [2, 6]} P_{i,j,k+r}^B \right], & \text{if Roll}_{i,j,k}^B; \\
1 - P_{j,i,k,0}^A, & \text{otherwise.}
\end{cases}
\]

\[
\Delta \leftarrow \max \left\{ \Delta, \ |p_1 - P_{i,j,k}^A|, \ |p_2 - P_{i,j,k}^B| \right\}
\]

\[
P_{i,j,k}^A \leftarrow p_1
\]

\[
P_{i,j,k}^B \leftarrow p_2
\]

until \(\Delta < \epsilon\)

return \(\left[P_{0,0,0}^A + (1 - P_{0,0,0}^B) \right] / 2\)
Hold at n (or goal)

Figure 2. Probability of an optimal player winning against a player using the “hold at n” policy

$n = 25 \Rightarrow$ optimal advantage = 4.2%; $n = 20 \Rightarrow$ optimal advantage = 8.0%
Hold value:

\[h(i, t_s) = \left\lfloor \frac{100 - i}{t - t_s} \right\rfloor \]

Figure 4. The probability of an optimal player winning against a player using the "t scoring turns" policy for different values of t.

\[t = 4 \rightarrow \text{optimal advantage} = 3.3\% \]
Roll if:
- \(k < b \) (you must score at least base value \(b \)),
- \(i + k < j - p \) (you must get within \(p \) of \(j \)), or
- either \(i \geq 100 - e \) or else \(j \geq 100 - e \) (you roll to win when someone is within \(e \) of the goal).

Optimizing parameters, \(b = 19 \), \(p = 14 \), and \(e = 31 \) \(\rightarrow \) optimal advantage = 1.9%
Roll if:
- either \(i \geq 100 - e \) or else \(j \geq 100 - e \), or
- \(k < c + (j - i)/d \).

Optimizing \(c = 21, d = 8, e = 29 \), and rounding division for hold value \(\rightarrow \) optimal advantage = 0.922%

So, if either player’s score is 71 or higher, roll for the goal. Otherwise, subtract your score from your opponent’s and let \(m \) be the closest multiple of 8. (Choose the greater multiple if halfway between multiples.) Then hold at 21 + \(m/8 \).
What we’ve learned:

- Playing to score is not necessarily playing to win.
- Simple rules do not imply simple perfect play.
- Making a guess at a solution and iteratively improving that guess can be a useful method.
- Similar iterative techniques can help us capture the simple essence of good play.
- The computer is an exciting power tool for the mind!
The Game of Pig page:
http://cs.gettysburg.edu/projects/pig

Pig CS teaching resources:
http://cs.gettysburg.edu/~tneller/resources/pig