Pedagogical Possibilities for the Dice Game Pig

Todd Neller, Clif Presser – Gettysburg College
Ingrid Russell – University of Hartford
Zdravko Markov – Central Connecticut State University

This work was sponsored in part by NSF DUE CCLI-A&I Award Number 0409497.
Simple Examples are Teaching Treasures

- Concise specification – Simply explained, avoiding distracting details
- Elegant solution – Simply solved, highlighting target concepts
- Engages student – Sparks curiosity, nurturing intrinsic motivations
Pig

• One of the most fun, extremely simple dice games
 – “Extremely simple” – described in two sentences
 – “Fun” – spawned commercial variants, e.g. Pass the Pigs (a.k.a. Pigmania, 1977)
• Used extensively by math educators
• CS can benefit as well!
Outline

• Pig Rules
• Pedagogical Possibilities
 – CS1
 – Artificial Intelligence
 – Machine Learning
 – Graphics
 – Networking
Pig Rules

• The first player reaching 100 points wins.
• On each turn, a player rolls a die as many times as desired until either the player holds and scores the sum of the rolls, or rolls a 1 and scores nothing.
• Let’s play!
Exercises:
1. “Hold at 20” turn
2. “Hold at 20” turn outcome distribution
3. “Hold at 20 or goal” turn
4. “Hold at 20 or goal” solitaire game
5. Average turns for 1,000,000 games of (4)
6. “Hold at 20 or goal” 2-player game
7. First-player advantage for 1,000,000 games of (6)
8. Human vs. computer game
“Hold at 20” Turn Comments

// Initialize variables

while () { // Turn not over
 // Roll die
 if () { // 1 rolled
 // Reset turn total and end turn
 }
 else {
 // Add roll to turn total
 }
}
Random random = new Random();
int turnTotal = 0;
boolean pigRolled = false;
while (!pigRolled && turnTotal < 20) {
 int roll = random.nextInt(6) + 1;
 System.out.println("Roll: " + roll);
 pigRolled = (roll == 1);
 if (pigRolled)
 turnTotal = 0;
 else
 turnTotal += roll;
}
System.out.println("Score gain: " + turnTotal);
CS1 – Objects

- Objects:
 - Game
 - Die
 - Player
 - Human player
 - Computer player
MLExAI: Solving the Dice Game Pig

Machine Learning Laboratory Experiences for Introducing Undergraduates to Artificial Intelligence
NSF DUE CCLI-A&I Award Number 0409497

Solving the Dice Game Pig:
an introduction to dynamic programming and value iteration

OVERVIEW
The jeopardy dice game Pig is very simple to describe, yet the optimal policy for play is far from trivial. Using the computation of the optimal solution as a central challenge problem, we introduce dynamic programming and value iteration methods, applying them to similar problems using the Java language.

OBJECTIVES
The object of this project is to give the student a deep, experiential understanding of dynamic programming and value iteration through explanation, implementation examples, and implementation exercises

- Dynamic Programming:
 - Demonstrate the need for dynamic programming through

In Collaboration With

University of Hartford
CCSU
Gettysburg College

Navigation
Home
Overview
Objectives
Prerequisites
Background
Description
Syllabus
Optimality Equations

- $i =$ player score, $j =$ opponent score, $k =$ turn total

\[
P_{i,j,k} = \max(P_{i,j,k,\text{roll}}, P_{i,j,k,\text{hold}})
\]

\[
P_{i,j,k,\text{roll}} = \frac{1}{6} \left((1 - P_{j,i,0}) + \sum_{r=2}^{6} P_{i,j,k+r} \right)
\]

\[
P_{i,j,k,\text{hold}} = 1 - P_{j,i+k,0}
\]
Optimal Play
Dynamic Programming

• Fibonacci example
• Progressive Pig: score at least 1 per turn → acyclic state space
• Worked example using Knuth’s literate programming style, e.g.

```java
public double pWin(int i, int j, int k) {
    if (i + k >= goal) return 1.0;
    if (j >= goal) return 0.0;
    if (computed[i][j][k]) return p[i][j][k];
    return p[i][j][k];
}
```

(Compute the probability of winning with optimal play)
Dynamic Programming (cont.)

• Exercises:
 – Pig solitaire: reach goal score g in n turns
 – Pig solitaire 2: maximize score in n turns
 – THINK solitaire: 2-dice Pig variant in 5 turns
 – Advanced projects:
 • Risk board game analysis
 • Simple Yahtzee variant analysis
Value Iteration

• Worked example: Piglet
 – Pig with a coin and goal score of 10
 – Score heads flipped or nothing if a tail is flipped

• Exercises:
 – Pig
 – Pig Solitaire 3: minimize turns to reach goal score g
 – Pass the Pigs
 – Advanced projects:
 • Hog: Pig with single throw of as many dice as desired
 • 10,000: jeopardy dice game
Machine Learning

• Comparative study of RL algorithms:
 – Useful as simple (but not trivial) benchmark
 – Precise optimal policy/state values known through value iteration
 – Monte-Carlo/ TD learning: model free, but slower convergence for infrequent states
 – Transition to more complex Markov games
Scientific Visualization

• Marching Cubes Algorithm
Networking

• Illustrate network programming
 – Client-server, peer-to-peer (P2P), …
 – Simple game → focus on networking concepts, not game
 – Fun factor
What Other Courses?

• This is what has been done.
• What other potentials are there?
 – Game Programming?
 – Software Engineering?
 – GUI Design?
 – <Insert your course here>?
Summary

• Simple examples are teaching treasures.
• Pig is a simple, fun teaching example for:
 – CS1 (algorithm design, OO design)
 – AI (MDPs, DP, value iteration)
 – Machine Learning, Graphics, Networking
 – Etc.
Resources

- http://cs.gettysburg.edu/~tneller/resources/pig
 - Game of Pig Website
 - CCSCNE paper, PPT
 - CS1 Exercises
 - MLExAI Pig project
 - 2 UMAP Journal papers

This work was sponsored in part by NSF DUE CCLI-A&I Award Number 0409497.