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Mancala (a.k.a. Kalah) Materials

• Board with 
• 6 play pits per side for each 

player

• 2 score pits, one to the right 
end of the board for each 
player 

• 48 pieces initially distributed 
4 per play pit in standard 
game
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Mancala Move

• A player’s move in Mancala consists of
• Selecting their non-empty play pit,

• Picking up all pieces from that pit,

• And “sowing” them counter-clockwise, one per pit, skipping the opponent’s 
score pit.

Player 1 sowing pattern



Mancala Move Example

• Player 2 (top) plays 8 pieces from upper-leftmost play pit:

Screenshots from Ludii general game system:



Mancala Move Example

• Player 2 (top) plays 8 pieces from upper-leftmost play pit:

(skipped)

Player 2 sowing pattern
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Mancala Free Move

• If your last piece sown is to your score pit, take another turn.

Player 1 to play

Player 1 to play again



Mancala Capture

• If your last piece sown is to an empty play pit on your side, capture 
that piece and any in the opponent’s opposite pit (which may be 
empty).  Captured piece(s) are placed in the player’s score pit.

capturecapture



Mancala Game End

• “Starvation” - At the end of a turn, when no pieces remain in one 
player’s play pits, their opponent scores remaining play pits.

• The player that scores more pieces wins.  If both players score the 
same number of pieces, the game is a draw (i.e. tie).



Problem: Mancala is Unfair

• The first of two perfect players 
will win by 10 points. (Irving, 
Donkers, Uiterwijk, 2000)



Solution: FairKalah – fair initial board states

• We have computed 254 initial states with 48 pieces arranged to be 
fair, i.e. two perfect players are proven to draw.

• This makes improvements to heuristic functions more apparent, as 
Mancala’s unfairness obscured relative player strength.



Computation of FairKalah Boards

• For each possible board resulting from 1 or 
2 pieces moved from the standard initial 
position, find all boards with 0 game value 
(1st player score – 2nd player score).

• Port of Irving’s C code to Java with
• 24-piece endgame database (1.16 GB)
• MTD(f) algorithm
• Heuristic node ordering: transposition table 

move, closest free moves, closest captures, 
closest remaining

• 3 and 251 fair boards with 1 and 2 pieces 
moved respectively



Fair Optimal Game Tree Analysis

• Fair Optimal Game Trees – subtrees of fair game tree with optimal 
play, i.e. all game value 0 (draw) states.
• Pro: information about perfect play state distribution
• Con: predictors lose performance on suboptimal game states

• MTD(f) analyses yielded 9,991,466 unique nonterminal optimal play 
states
• 28,366,064 total plays and 15,828,178 optimal plays, yielding average play 

and optimal play branching factors of approximately 2.839 and 1.584, resp.
• number of states with 1-6 optimal moves are, resp.: 

5,619,419 (56.2%), 3,188,759 (31.9%), 933,219, 219,859, 29,112, and 1,098. 
• Thus, 88.2% of states have 1-2 optimal plays.



Fair Optimal Game Tree Analysis (cont.)

• With increasing depth:
• Mean legal moves 

decreases from 6 to 1
• Mean optimal moves is 

relatively steady
• Thus, mean game 

tension decreases from 
.8 to 0. (.833 = unique 
optimal opening move)

• Conjecture: Time-
management should 
allocate more time to 
opening play.



Fair Optimal Game Tree Insights

• 9,991,466 (100%) unique FOGT states:
• 5,558,640 (55.63%) with free move(s):  In 5,326,495 

(95.82%) of these, the closest free move is optimal.
• 4,432,826 (44.37%) with no free move: In 3,777,047 

(85.21%) of these, capture move(s) are possible. Of 
these, 3,212,373 (85.05%) have an optimal capture 
move. Thus, if there is no free move, in 72.47% of 
states, a capture move is optimal.

• The closer the pit, the larger the percentage of states 
have that pit as an optimal play.

• This supports the node ordering heuristic of Irving 
et al.: transposition table move, closest free moves, 
closest captures, closest remaining



Analysis of Diverse Play Data

• FOGT insights generalized poorly to non-fair states

• New diverse dataset:
• First, randomly score 5 pieces
• Breadth-First-Traversal: limited to 100 nodes per depth
• 9,449,283 unique states, 6,151,746 after removing player and depth

• 50-50 train/test split

• Modeling packages used:
• Linear and Logistic Regression (scikit-learn)
• DecisionTreeRegressor/Classifier, 

RandomForestRegressor/Classifier (scikit-learn)
• CatBoostRegressor/Classifier (CatBoost)



Game Value Regression Modeling

• Regression aims to predict “game value”
• “game_val”: The current player score minus 

the opponent score if the game was played
to completion with perfect play

• Hyperparameters:
• DecisionTreeRegressor:        min_samples_split=500000

• RandomForestRegressor:     n_estimators=100

• CatBoostRegressor:               iterations=30, learning_rate=0.9, depth=16.



Optimality Classification Modeling

• Regression aims to predict individual 
pit optimality, e.g. whether that move 
is optimal

• Pits with 0 pieces pruned from analysis

• Same hyperparameters

• Base predictor:
• Accuracy/log loss if predictor guesses that 

for a pit x, chance of optimality is 50%

• Log loss: stronger than accuracy

Classification Accuracies

Classification Log Losses



Game Value SHAP Interpretation

• SHapley Additive exPlanation (SHAP) 
values:
• “assign each feature an

importance value for a particular 
prediction.” 

• Feature ordering is by significance, point 
density indicates number of occurrences

• X axis: effect on model prediction

• Interpretations:
• Score difference highly correlated
• pits 4, 5, 6,   ,   , 3, and 3 are all strong 

predictors of game value

CatBoostRegressor game_val
SHAP graph



Game Value SHAP Interpretation
CatBoostRegressor game_val SHAP graph



Pit 1 Optimality SHAP Interpretation

• Interpretations:
• Free move nearly perfectly correlated

• With some exceptions, having more pieces 
in pit 1 makes it less likely to be an optimal 
move

• Free moves positively correlate, as taking a 
farther free move would add to pit 1, 
ruining the free move option.

• More counters on either side negatively 
correlate with optimality

• Opponent free moves positively correlates

CatBoostClassifier optimal_1
SHAP graph



Pit 1 Optimality SHAP Interpretation
CatBoostClassifier optimal_1 SHAP graph



Conclusions
• 254 fair starting states for Kalah (a.k.a. Mancala) moving 1-2 pieces from 

the standard 4-pieces-per-play-pit initial state. 

• Analysis of unique fair optimal game tree states affirmed the node-ordering 
heuristic of Irving et al., underscoring a preference for closest free moves, 
closest captures, and closest plays to the scoring pit.

• Optimal play data from a diverse set of optimal and suboptimal game 
states yielded models with strength for predicting game values and optimal 
moves. Insights:
• Decision trees ensembles perform well in modeling game value and optimality per 

pit
• SHAP graphs indicate the importance of free moves, and also suggest there are 

overarching patterns where it is better to have more pieces in certain pits



Questions?


