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Mancala (a.k.a. Kalah) Materials

 Board with

* 6 play pits per side for each
player
e 2 score pits, one to the right
end of the board for each
player
* 48 pieces initially distributed
4 per play pit in standard
game




Mancala (a.k.a. Kalah) Materials

 Board with

* 6 play pits per side for each
player
e 2 score pits, one to the right
end of the board for each
player
* 48 pieces initially distributed
4 per play pit in standard
game
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Mancala Move

* A player’s move in Mancala consists of
* Selecting their non-empty play pit,
* Picking up all pieces from that pit,
* And “sowing” them counter-clockwise, one per pit, skipping the opponent’s
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Mancala Move Example

* Player 2 (top) plays 8 pieces from upper-leftmost play pit:
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Screenshots from Ludii general game system: ‘%3




Mancala Move Example

* Player 2 (top) plays 8 pieces from upper-leftmost play pit:
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Player 2 sowing pattern




Mancala Move Example

* Player 2 (top) plays 8 pieces from upper-leftmost play pit:
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(skipped)




Mancala Move Example

* Player 2 (top) plays 8 pieces from upper-leftmost play pit:
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Mancala Free Move

* If your last piece sown is to your score pit, take another turn.
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Player 1 to play

068..0@ Player 1 to play again
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Mancala Capture

* If your last piece sown is to an empty play pit on your side, capture
that piece and any in the opponent’s opposite pit (which may be
empty). Captured piece(s) are placed in the player’s score pit.
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Mancala Game End

e “Starvation” - At the end of a turn, when no pieces remain in one
player’s play pits, their opponent scores remaining play pits.

* The player that scores more pieces wins. If both players score the
same number of pieces, the game is a draw (i.e. tie).



Problem: Mancala is Unfair

* The first of two perfect players
will win by 10 points. (Irving,
Donkers, Uiterwijk, 2000)

m(n)

Game value

Perfect game

D) [2(W) 32-32-1

42) | 6 (W) 3-3-230-231-1323

43) | 8(W) 13-1-032-2-3-0-1320-3-0-2

44) | 2(W) 02-2-3-0-2-21-303231-0-32-1-0

45) | 2 (W) 0-2-1-3-0-2-1-0-32-3-021-2-0-02-2-1-3-3-313032-13031-1-2-2-3

46) | 0(D) 1-0-2-3-1330-01-2-2-21-201-2-23-3-23-230-32-32-12-1-0-32

5(1) | 0(D) 434322

52) | 0 (D) 31-32-24-0-0-31-3

53) | 8 (W) 24-3-3-03-41-1-04342-3-3-2-2-4-414342.3

5(4) | 12(W) 12-04-03-2-20-41-1-42-32-3-2-40-0-1

5(5) | 2(W) 03-2-2-1-1-23-24-2-0-34414340-4240-2-14342

56) | 2 (W) 2-0-0-3-3-0-2-1-440-4-42-2-121-12-3-1-4-20-0-34-24-324-1-3-3-1-41-43-2-2-3
6(1) | 2 (W) 54-543322

6(2) | 10 (W) 42-42-30-0-1-1-4-5

6(3) | 2 (W) 4-5-35-250-2-154-451535452-53-3-54-2

6(4) | 10 (W) 25-10-3-3-5153-1-4-5-045-4-535452-53-4-1-3-2-0-54-1-3

6(5) | 12 (W) 12-02-05-2-4-51-53-3-45-20-3-2-2-345-5-4-351-0-54-1-52-354-4-254-3-3

Table 9: Game values and perfect games for Kalah(m, n).
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ABSTRACT

Usmng full-game databases and optimized tree-search algorithms. the game of Kalah 1s solved
for several starting configurations up to 6 holes and 5 counters per hole. The main search algo-
rithm used was rterative-deepeming MTD( f). Major search enhancements were move ordering,
transposition tables, futility pruning, enhanced transposition cut-off. and endgame databases.

1. INTRODUCTION

Kalah 1s a modem, commercial vaniant of Mancala, introduced 1n the 1950s by a firm called “The Kalah Game
Company” (owned by W.J. Champion). It has gained a large populanity especially in the United States and 1s
still played m pubs and at home. In 1960, a first computerized version of the game was produced and many
others followed. Remarkably, Kalah has a relatively long history in Artificial Intelligence: Bell (1968) already
used Kalah to demonstrate game playing by a computer. and Slagle and Dixon (1970) used Kalah to illustrate
their M & N search algorithm. Nowadays Kalah is often used as an example game in computer-science courses.

The term ‘mancala’ 1s used to indicate a large group of related games that are played almost all over the world
(Murray, 1952; Russ. 2000). Mancala games (also known as ‘pebble-and-pit games™ or ‘count-and-capture
games’) are played on a board that contains 2, 3 or 4 rows of holes. Sometimes these holes are simply dug
in the soil or drawn on paper. Often there are two or four additional holes (called stores) with a special
meaning. The games are usually played by two players, although one-player and three-player versions are
known. Mancala games are played with a large set of equal counters. These counters can be pebbles, shells,
seeds or any small round objects. The game starts with a certain distibution of the counters over the pits
(usually an equal number per hole). A move 1s made by selecting one of the holes, lifting all counters out of 1t
and putting back the counters one-by-one in adjacent holes 1n a certamn direction. Thas 1s called “sowing”™ The
hole 1n which the last counter 1s put deternunes what happens next. Sometimes a capture takes place and the
turn 1s over, sometimes the sowing continues, and other times the player is allowed to do another move. The
goal of the game 1s always to capture as many counters as possible.




Solution: FairKalah — fair initial board states

* We have computed 254 initial states with 48 pieces arranged to be

fair, i.e. two perfect players are proven to draw.

* This makes improvements to heuristic functions more apparent, as
Mancala’s unfairness obscured relative player strength.
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Computation of FairKalah Boards

* For each possible board resulting from 1 or
2 pieces moved from the standard initial
position, find all boards with 0 game value

(15t player score — 2"d player score).

* Port of Irving’s C code to Java with
e 24-piece endgame database (1.16 GB)

* MTD(f) algorithm

* Heuristic node ordering: transposition table
move, closest free moves, closest captures,
closest remaining

e 3 and 251 fair boards with 1 and 2 pieces
moved respectively




Fair Optimal Game Tree Analysis

* Fair Optimal Game Trees — subtrees of fair game tree with optimal
play, i.e. all game value 0 (draw) states.
* Pro: information about perfect play state distribution
* Con: predictors lose performance on suboptimal game states

 MTD(f) analyses yielded 9,991,466 unique nonterminal optimal play
states

» 28,366,064 total plays and 15,828,178 optimal plays, yielding average play
and optimal play branching factors of approximately 2.839 and 1.584, resp.

* number of states with 1-6 optimal moves are, resp.:
5,619,419 (56.2%), 3,188,759 (31.9%), 933,219, 219,859, 29,112, and 1,098.

* Thus, 88.2% of states have 1-2 optimal plays.



Fair Optimal Game Tree Analysis (cont.)

e With increasing depth:
 Mean legal moves
decreases from6to 1

* Mean optimal moves is
relatively steady

* Thus, mean game
tension decreases from
.810 0. (.833 = unique
optimal opening move)

* Conjecture: Time-
management should

allocate more time to
opening play.

Mean Legal and Optimal Moves

Moves
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Fair Optimal Game Tree Insights

* 9,991,466 (100%) unique FOGT states:

e 5,558,640 (55.63%) with free move(s): In 5,326,495
(95.82%) of these, the closest free move is optimal.

e 4,432,826 (44.37%) with no free move: In 3,777,047
(85.21%) of these, capture move(s) are possible. Of
these, 3,212,373 (85.05%) have an optimal capture
move. Thus, if there is no free move, in 72.47% of
states, a capture move is optimal.

* The closer the pit, the larger the percentage of states
have that pit as an optimal play.

* This supports the node ordering heuristic of Irving
et al.: transposition table move, closest free moves,
closest captures, closest remaining

Pit

States Optimal

Percent

AN D B W=

3568534
2945674
2640664
2527830
2333925
1811551

35.72%
29.48%
26.43%
25.30%
23.36%
18.13%




Analysis of Diverse Play Data

* FOGT insights generalized poorly to non-fair states

* New diverse dataset:
* First, randomly score 5 pieces
* Breadth-First-Traversal: limited to 100 nodes per depth
* 9,449,283 unique states, 6,151,746 after removing player and depth

* 50-50 train/test split
* Modeling packages used:

* Linear and Logistic Regression (scikit-learn)

* DecisionTreeRegressor/Classifier,
RandomForestRegressor/Classifier (scikit-learn)

» CatBoostRegressor/Classifier (CatBoost)



Game Value Regression Modeling

: : L u ” Model MSE| R"
* Regression aims to predict “game value

 “game_val”: The current player score minus Linear regression|23.69(0.81
the opponent score if the game was played Decision tree 43 8410.63
to completion with perfect play Random forest 5.7010.95
CatBoost 4.3710.96

¢ Hyperparameters:
* DecisionTreeRegressor: min_samples_split=500000
 RandomForestRegressor: n_estimators=100
* CatBoostRegressor: iterations=30, learning_rate=0.9, depth=16.



Optimality Classification Modeling

* Regression aims to predict individual
pit optimality, e.g. whether that move
is optimal

* Pits with O pieces pruned from analysis
* Same hyperparameters

* Base predictor:

* Accuracy/log loss if predictor guesses that
for a pit x, chance of optimality is 50%

* Log loss: stronger than accuracy

Model 6 15|14(3[2]|1
Base predictor 68].68|.67(.65|.57|.58
Logistic regression|.80|.80(.78(.77|.77{.86
Random forest .87|.86|.86(.85]|.86(.89
CatBoost .89(.88|.88|.87|.87(.92

Classification Accuracies

Model 615141321
Base predictor 63].63|.63[.65|.68|.68
Logistic regression|.43|.44(.47|.48|.46(.31
Random forest 311.32(.33|.33(.32].23
CatBoost 27(.28].28].29].29|.21

Classification Log Losses




Game Value SHAP Interpretation

» SHapley Additive exPlanation (SHAP)
values:

e “assign each feature an
importance value for a particular
prediction.”

* Feature ordering is by significance, point
density indicates number of occurrences

e X axis: effect on model prediction

* Interpretations:
» Score difference highly correlated

* pits4,5,6,4,5,3, and 3 are all strong
predictors of game value

score_diff

pit_4

pit_5

pit_&

pit_4o

pit_5o

pit_3o

pit_3
counters_o
pit_2o

pit_lo

pit_2

pit_6o
free_moves
move_count
largest_capture
mowve_count_o
counters

pit 1

iIs_exposed 3

CatBoostRegressor game_val
SHAP graph

—20

-10

0

10

20

SHAP value (impact on model output)

High

Feature value



Game Value SHAP Interpretation

CatBoostRegressor game_val SHAP graph

High
score_diff +—
pit_4 o
pit_5 e
pit_6 CEe—
pit_4o -‘—
pit_50 — ——
pit_3o -‘-—
pit_3 e
counters o +

e value

pit 20 TH—



Pit 1 Optimality SHAP Interpretation

* Interpretations: e closest_re_move_
* Free move nearly perfectly correlated free_mf;
* With some exceptions, having more pieces fr

in pit 1 makes it less likely to be an optimal e
move .
* Free moves positively correlate, as taking a o
farther free move would add to pit 1, e o
ruining the free move option. o
* More counters on either side negatively s
correlate with optimality o co
* Opponent free moves positively correlates core g
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Pit 1 Optimality SHAP Interpretation
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Conclusions

e 254 fair starting states for Kalah (a.k.a. Mancala) moving 1-2 pieces from
the standard 4-pieces-per-play-pit initial state.

* Analysis of unique fair optimal game tree states affirmed the node-ordering
heuristic of Irving et al., underscoring a preference for closest free moves,
closest captures, and closest plays to the scoring pit.

* Optimal play data from a diverse set of optimal and suboptimal game
states yielded models with strength for predicting game values and optimal
moves. Insights:

* Decision trees ensembles perform well in modeling game value and optimality per
pit

 SHAP graphs indicate the importance of free moves, and also suggest there are
overarching patterns where it is better to have more pieces in certain pits



Questions?




