Solving the Dice Game Pig: an introduction to dynamic programming and value iteration

Todd Neller
Gettysburg College

This work was sponsored in part by NSF DUE CCLI-A&I Award Number 0409497.
Pig

• One of the most fun, extremely simple dice games
 – “Extremely simple” – described in two sentences
 – “Fun” – spawned commercial variants, e.g. Pass the Pigs (a.k.a. Pigmania, 1977)

• High Fun-to-SLOC (source lines of code) ratio

• Simple examples are teaching treasures
 – Currently, Pig is used extensively by math educators and is increasingly being used by CS educators.
Outline

• Pig Rules
• What the optimal player optimizes
• Dynamic programming approximation
 – Exercises
• Value iteration solution
 – Exercises
• Conclusion
Pig Rules

- The first player reaching 100 points wins.
- On each turn, a player rolls a die as many times as desired until either the player holds and scores the sum of the rolls, or rolls a 1 and scores nothing.
Maximizing Score

• A play maximizing score will roll if the expected gain exceeds expected loss:
 – 5/6 gain: average of 2…6 = 4
 – 1/6 loss: turn total k
 – $5/6 \times 4 = 1/6 \times k \rightarrow k = 20$
 – Hold at 20 maximizes expected score per turn

• When might a player not want to hold at 20? Why?

• Playing to score is not playing to win.
Optimality Equations

- $i =$ player score, $j =$ opponent score, $k =$ turn total

$$P_{i,j,k} = \max \left(P_{i,j,k,\text{roll}}, P_{i,j,k,\text{hold}} \right)$$

$$P_{i,j,k,\text{roll}} = \frac{1}{6} \left((1 - P_{j,i,0}) + \sum_{r=2}^{6} P_{i,j,k+r} \right)$$

$$P_{i,j,k,\text{hold}} = 1 - P_{j,i+k,0}$$
Optimal Play
Dynamic Programming

- Fibonacci example
- Progressive Pig: score at least 1 per turn → acyclic state space
- Worked example using Knuth’s literate programming style, e.g.

```java
public double pWin(int i, int j, int k) {
    if (i + k >= goal) return 1.0;
    if (j >= goal) return 0.0;
    if (computed[i][j][k]) return p[i][j][k];

    // Recursively compute p[i][j][k]
    return p[i][j][k];
}
```
Dynamic Programming (cont.)

• Exercises:
 – Pig solitaire: reach goal score g in n turns
 – Pig solitaire 2: maximize score in n turns
 – THINK solitaire: 2-dice Pig variant in 5 turns
 – Advanced projects:
 • Risk board game analysis
 • Simple Yahtzee variant analysis
Value Iteration

• Worked example: Piglet
 – Pig with a coin and goal score of 10
 – Score heads flipped or nothing if a tail is flipped

• Exercises:
 – Pig
 – Pig Solitaire 3: minimize turns to reach goal score g
 – Pass the Pigs
 – Advanced projects:
 • Hog: Pig with single throw of as many dice as desired
 • 10,000: jeopardy dice game
Conclusion

• Simple examples are teaching treasures.
• Pig is a simple, fun teaching example for teaching dynamic programming and value iteration.
• These projects provide many jumping off points for undergraduate research projects.
• There are also applications of Pig to CS1 (algorithm design, OO design), Machine Learning, Graphics, Networking, etc.
Further Resources

- http://modelai.gettysburg.edu
- http://cs.gettysburg.edu/~tneller/resources/pig
 - Game of Pig Website
 - CCSCNE paper, PPT
 - CS1 Exercises
 - MLExAI Pig project
 - 3 UMAP Journal papers

This work was sponsored in part by NSF DUE CCLI-A&I Award Number 0409497.