Learning and Using Hand Abstraction Values for Parameterized Poker Squares

Colin Messinger & Zuozhi Yang
Todd W. Neller
Gettysburg College
Structure of the AI Player

Static Evaluation
Evaluate scoring potentials under given point system in five minutes

Quickly provide estimated score

Real-Time Search
Search on the game tree using those estimation
Static Evaluation

Key Techniques:
• Partial Hand Abstractions
• Monte Carlo Methods
• ϵ-Greedy Strategy
Naïve Partial Hand Abstraction

• Why naïve? – Assume that each row/column is independent

• Key Features:
 – number of cards
 – row (“-”) or column (“|”)?
 – rank counts and how many cards undealt in the rank
 – flush (“f”) is achievable?
 – straight (“s”) is achievable?
 – royal flush (“r”) is achievable?

• For example, “14|1(3)1(2)1(2)f3(8)s” represents a column hand abstraction after the 14th move.
Monte Carlo and ϵ-greedy

• Play a lot of games during 5 min of training

• Exploration versus Exploitation
 – Exploration: random plays
 – Exploitation: greedy plays

• ϵ is the proportion of random plays

• On-policy learning
 – constantly update the policy that is used to make decisions
Real-Time Search

• Colin’s goal: Utilize George’s heuristic evaluation of PPS game states to design a limited real-time search that approximates optimal play.

• Two main design decisions:
 – Time Management
 – Search Algorithms
Time Management

• Sometimes, it is beneficial to distribute reasoning time non-uniformly in real-time play

• Comparison:
 – Uniform Time Management (UTM)
 – Gaussian Time Management (GTM)
 • more middle-game time concentration
 • 4 sets of means and standard deviations

• UTM dominated GTMs for almost all point systems
Search Algorithm

• Three approaches tried
 – Greedy Monte Carlo (a.k.a. Flat Monte Carlo), depth limit 5
 – UCB1 Monte Carlo, depth limit 5
 – Expectimax, depth limit 2
 • Chance-Sampled
 • Action-Sampled

• Expectimax was found to have the best performance
Search Algorithm Results

Total Normalized Chart Scores

GMC UCB Expectimax CSE ASE

NARL .5 eps. Hand Size
Comparison of Design Components

• We performed component significance testing by comparing performance of players with trivialized components:
 – Expectimax search, 0.5 initial epsilon NARL evaluation (GettysburgPlayer)
 – Expectimax search, *simple score evaluation*
 – *Greedy Monte Carlo search*, 0.5 initial epsilon NARL evaluation

• Heuristic evaluation function was most significant
Component Significance Results

Component Comparison
Normalized Scores

American British Ameritish 3 of a Kind Straight Flush Full House 4 of a Kind

- Expectimax, NARL .5 eps.
- Expectimax, simple eval.
- GMC, NARL .5 eps.
Future Research

• Argument for improving heuristic evaluation:
 – It was most significant to our performance, so greater performance may come most easily here.

• Argument for improving search:
 – Expectimax with depth limit 2 only utilized 9.4% of our allotted play decision time, so we can surely leverage the unused 90.6% (e.g. Monte Carlo Tree Search with parallelization).