An Introduction to Counterfactual Regret Minimization

Todd W. Neller
Gettysburg College

Marc Lanctot
Maastricht University
Motivation

• 2000: Hart and Mas-Colell introduced regret matching algorithm
• 2008: Zinkevich et al. introduced counterfactual regret minimization (CFR)
 – dominant in computer poker competitions
• Perceived need:
 – introductory materials for experiential teaching of regret matching, CFR, and more advanced concepts
 – regret-based game-theory teaching that bypasses traditional path (e.g. dominated strategy elimination, simplex method)
Outline

• Regret
• Counterfactual Regret
• Assignment Handout Outline
• Conclusion
Rock-Paper-Scissors (RPS)

- Rock-Paper-Scissors (RPS)
 - 2 players, 3 possible simultaneous actions: rock (R), paper (P), scissors (S)
 - Win, tie, loss score +1, 0, -1, respectively
Regret

• Suppose you choose rock and your opponent chooses paper. Relative to your choice, how much do you regret not having chosen
 – paper?
 – scissors?

• Regret is the difference in utility between an action and your chosen action.

• Regrets: R→0 P→1 S→2
Regret Matching

• Choose an action with probability proportional to positive regrets.
• Regrets (0, 1, 2) normalized to probabilities: (0, 1/3, 2/3)
• Suppose we now choose S while our opponent chooses R.
 – Regrets: (1, 2, 0)
 – Cumulative regrets: (1, 3, 2)
 – Normalized cumulative regrets: (1/6, 3/6, 2/6)
Regret Minimization

• Regret Matching alone will not minimize regrets in the long run.
• However, the average strategy used over all iterations converges to a correlated equilibrium.
• In this example, average the strategies \((1/3, 1/3, 1/3)\), \((0, 1/3, 2/3)\), \((1/6, 3/6, 2/6)\), etc.
Counterfactual Regret Example

- Input: realization weights
- Compute node strategy from normalized positive cumulative regret.
- Update avg. output strategy weighted by player realization weight.
- Recursively evaluate strategy to compute action values and node value.
- Compute counterfactual regret.
- Update cumulative regret weighted by opponent realization weight.
Counterfactual Regret Example

<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realization Weights</td>
<td>0.5</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Player 1 Node:

<table>
<thead>
<tr>
<th></th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative Regret</td>
<td>20</td>
<td>-10</td>
<td>30</td>
</tr>
<tr>
<td>Positive Regret</td>
<td>20</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Strategy</td>
<td>0.4</td>
<td>0</td>
<td>0.6</td>
</tr>
<tr>
<td>Cumulative Strategy +=</td>
<td>0.2</td>
<td>0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Player 1 Node Actions:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p1'</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>p2'</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>v1</td>
<td>40</td>
<td>-8</td>
<td>20</td>
</tr>
</tbody>
</table>

Node Value

<table>
<thead>
<tr>
<th></th>
<th>28</th>
</tr>
</thead>
</table>

Action Regrets

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>-36</th>
<th>-8</th>
</tr>
</thead>
</table>

Counterfactual Regrets

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>-9</th>
<th>-2</th>
</tr>
</thead>
</table>

Old Cumulative Regret

<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>-10</th>
<th>30</th>
</tr>
</thead>
</table>

New Cumulative Regret

| | 23 | -19 | 28 |

- **Input:** realization weights
- **Compute node strategy from normalized positive cumulative regret.**
- **Update avg. output strategy weighted by player realization weight.**
- **Recursively evaluate strategy to compute action values and node value.**
- **Compute counterfactual regret.**
- **Update cumulative regret weighted by opponent realization weight.**
Materials Provided

- Starter example Java code explained in a 38 page PDF using Knuth’s literate programming style presentation.
- Several tested programming exercises to facilitate experiential learning and deep mastery of material.

To select the actions chosen by the players, we compute the current, regret-matched strategy, and use it to select actions for each player. Because strategies can be mixed, using the same strategy does not imply selecting the same action.

```java
(Get regret-matched mixed-strategy actions)≡
  double[] strategy = getStrategy();
  int myAction = getAction(strategy);
  int otherAction = getAction(oppStrategy);

  Next, we compute the utility of each possible action from the perspective of the player playing myAction:

  Compute action utilities≡
  actionUtility[otherAction] = 0;
  actionUtility[otherAction] = NUM_ACTIONS - 1 ? 0 : otherAction + 1 = 1;
  actionUtility[otherAction] = 0 ? NUM_ACTIONS - 1 : otherAction - 1 = -1;

  Finally, for each action, we compute the regret, i.e. the difference between the action’s expected utility and the utility of the action chosen, and we add it to our cumulative regrets.

  Accumulate action regrets≡
  for (int a = 0; a < NUM_ACTIONS; a++)
    regretSum[a] = actionUtility[a] - actionUtility[myAction];

  For each individual iteration of our training, the regrets may be temporarily skewed in such a way that an important strategy in the mix has a negative regret sum and would never be chosen. Regret sums and thus individual iteration strategies are highly erratic. What converges to a minimal regret strategy is the average strategy across all iterations. This is computed in a manner similar to getStrategy above, but without the need to be concerned with negative values.

  Get average mixed strategy across all training iterations)≡
  public double[] getAverageStrategy() {
    double[] avgStrategy = new double[NUM_ACTIONS];
    double normalizingSum = 0;
    for (int a = 0; a < NUM_ACTIONS; a++)
      normalizingSum += strategySum[a];
    for (int a = 0; a < NUM_ACTIONS; a++)
      if (normalizingSum > 0)
        avgStrategy[a] = strategySum[a] / normalizingSum;
      else
        avgStrategy[a] = 1.0 / NUM_ACTIONS;
    return avgStrategy;
  }
```
Materials Outline

- Regret Matching and Minimization
 - Worked example: RPS regret minimization versus fixed strategy
 - Exercise: RPS equilibrium, Colonel Blotto
- CFR
 - Worked example: Kuhn Poker equilibrium
 - Exercise: 1-die-versus-1-die Dudo
- “Cleaning” strategy results
- FSICFR
 - Worked example: Liar Die
 - Exercise: 1-die-versus-1-die Dudo with 3 claim memory limit
- Exploiting Opponent Mistakes
 - Exercise: Perturbed Liar Die
- Further Challenges (e.g. Minimum Unique Fingers)
Conclusion

• Regret minimization algorithms are an important part of the modern game theory landscape.

• These literate programming materials provide
 – an expedited, experiential introduction to the main concepts.
 – a starting point for many possible advanced undergraduate / graduate research projects.