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Introduction to Pig
The object of the jeopardy dice game Pig is to be the first player to reach

100 points. Each turn, a player repeatedly rolls a die until either a 1 is rolled
or the player holds and scores the sum of the rolls (i.e., the turn total). At
any time during a player’s turn, the player is faced with two choices: roll
or hold. If the player rolls a 1, the player scores nothing and it becomes
the opponent’s turn. If the player rolls a number other than 1, the number
is added to the player’s turn total and the player’s turn continues. If the
player instead chooses to hold, the turn total is added to the player’s score
and it becomes the opponent’s turn.
In our original article [Neller and Presser 2004], we described a means

to compute optimal play for Pig. However, optimal play is surprisingly
complex and beyond human potential to memorize and apply. In this
paper, we mathematically explore a more subjective question:
What is the simplest human-playable policy that most closely approximates
optimal play?

While one cannot enumerate and search the space of all possible simple
policies for Pig play, our exploration will present interesting insights and
yield a surprisinglygoodpolicy that one canplay bymemorizingonly three
integers and using simple mental arithmetic.
First, we review the criterion for optimality and discuss our means of

comparing the relative performance of policies. Thenwedescribe and eval-
uate several policies with respect to the optimal policy.
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Maximizing the Probability of Winning
Let Pi,j,k be the player’s probability of winning if the player’s score is i,

the opponent’s score is j, and the player’s turn total is k. In the case where
i + k ≥ 100, wehavePi,j,k = 1because theplayer can simplyhold andwin.
In the general case where 0 ≤ i, j < 100 and k < 100− i, the probability of
a player winning who is playing optimally (i.e., an optimal player) is

Pi,j,k = max (Pi,j,k,roll, Pi,j,k,hold),

where Pi,j,k,roll and Pi,j,k,hold are the probabilities of winning by rolling or
holding, respectively. These probabilities are given by

Pi,j,k,roll =
1
6



(1− Pj,i,0) +
X

r∈[2,6]

Pi,j,k+r



 ,

Pi,j,k,hold = 1− Pj,i+k,0.

The probability of winning after rolling a 1 or holding is the probability
that the other player will not win beginning with the next turn. All other
outcomes are positive and dependent on the probabilities of winning with
higher turn totals.
Theseequationscanbesolvedusingvalue iterationasdescribedinNeller

and Presser [2004]. The solution to Pig is visualized in Figure 1. The axes
are i (player 1 score), j (player 2 score), and k (the turn total). The surface
shown is the boundary between states where player 1 should roll (below
the surface) and states where player 1 should hold (above the surface).

Comparing Policies
Throughout the paper, we measure the performance of policies against

the optimal policy of Neller and Presser [2004]. In this section, we describe
the technique.
Let RollAi,j,k and RollBi,j,k be Boolean values indicating whether or not

player A and player B, respectively, will roll given a score of i, an oppo-
nent score of j, and a turn total of k. Then we can define the respective
probabilities of winning in these states, PA

i,j,k and PB
i,j,k, as follows:

PA
i,j,k =

(
1
6

h
(1− PB

j,i,0) +
P

r∈[2,6] P
A
i,j,k+r

i
, if RollAi,j,k;

1− PB
j,i+k,0, otherwise.

PB
i,j,k =

(
1
6

h
(1− PA

j,i,0) +
P

r∈[2,6] P
B
i,j,k+r

i
, if RollBi,j,k;

1− PA
j,i+k,0, otherwise.
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Figure 1. Roll/hold boundary for optimal Pig policy.

There is anadvantage togoingfirst: When twooptimalplayers compete,
the first player has a 53.06% chance of winning. The probability of player
A (respectively, B) winning when going first is PA

0,0,0 (respectively, PB
0,0,0).

Since there are no draws, the probability of A winning when B goes first
is (1− PB

0,0,0). Assume that the first player is determined by an odd/even
die roll. Then the average probability of a player A win is

1
2

£
PA

0,0,0 + (1− PB
0,0,0)

§
.

Once the system of equations above is solved, we use this average proba-
bility to evaluate relative policy strength.
Those equations can be solving using a process similar to value itera-

tion [Bellman 1957; Bertsekas 1987; Sutton and Barto 1998], by which we
iteratively improve estimates of the value of being in each state until our
estimates are “good enough.” Put simply, we begin with arbitrary esti-
mates for all unknown probabilities; all our initial estimates are 0. Thenwe
iteratively go through all equations, updating our left-hand-side probabil-
ities with new estimates computed from the right-hand-side expressions.
These estimate revisions continue until they converge, that is, until no sin-
gle estimate is changed significantly. This procedure can be viewed as a
generalization of the Jacobi iterative method for solving linear systems.
Let S be the set of all nonterminal game states (i, j, k) where i, j ∈

[0, 99] and k ∈ [0, 99− i]. Then our policy-comparison algorithm is given
as Algorithm 1.
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Algorithm 1 Policy Comparison
For each (i, j, k) ∈ S , initialize PA

i,j,k and PB
i,j,k arbitrarily.

Repeat
∆ ← 0
For each (i, j, k) ∈ S ,

p1 ←
(

1
6

h
(1− PB

j,i,0) +
P

r∈[2,6] P
A
i,j,k+r

i
, if RollAi,j,k;

1− PB
j,i+k,0, otherwise.

p2 ←
(

1
6

h
(1− PA

j,i,0) +
P

r∈[2,6] P
B
i,j,k+r

i
, if RollBi,j,k;

1− PA
j,i+k,0, otherwise.

∆ ← max
©
∆,

ØØp1− PA
i,j,k

ØØ ,
ØØp2− PB

i,j,k

ØØ™

PA
i,j,k ← p1

PB
i,j,k ← p2

until∆ < ≤

return
£
PA

0,0,0 + (1− PB
0,0,0)

§
/2

Hold at n (or at Goal)
Perhaps the best-known simple policy is the “hold at 20” policy, where

a player holds for any turn total that is greater than or equal to 20, or would
reach the goal total of 100. In his bookDice Games Properly Explained, Reiner
Knizia presents an odds-based argument for why holding at 20 maximizes
the expected points per turn, viewing each roll as a bet that a 1 will not be
rolled:
. . . we know that the true odds of such a bet are 1 to 5. If you ask
yourself how much you should risk, you need to know how much
there is to gain. A successful throw produces one of the numbers 2,
3, 4, 5, and 6. On average, you will gain four points. If you put 20
points at stake this brings the odds to 4 to 20, that is 1 to 5, and makes
a fair game. . . .Whenever your accumulated points are less than 20,
you should continue throwing, because the odds are in your favor.

[Knizia 1999, 129]
Onemightexpect that, sinceholdingat 20maximizes theexpectedpoints

per turn, then this strategy would have a greater expected win probability
against optimal than any other “hold at n” policy for n 6= 20.
Comparing optimal play versus “hold at n” for n ∈ [15, 35], we find

a surprising result, shown in Figure 2. In fact, we minimize the average
probability of an optimal player win to .521 when n = 25. The optimal
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Figure 2. Probability of an optimal player winning against a player using the “hold at n” policy
for different values of n.

player has a 4.2% win probability advantage over the “hold at 25” player,
compared to an 8.0% advantage over the “hold at 20” player. This is an
unexpected and significant improvement.
Considering the average optimal win probabilities of Figure 2, we ob-

serve local minima at 16, 19, 25, and 33. As fractions of the goal score 100,
these approximate 1/6, 1/5, 1/4, and 1/3. This suggests a slightly different
class of policies that seek to reach the goal score through a fixed number of
scoring turns—turns that do not end with the roll of a 1 (pig) but instead in-
crease the player’s score—each of which achieves some desired minimum
hold value.

What a Turn Scores
To understand the problem with a simplistic single hold value, first

consider that the actual outcome of a “hold at 20” scoring turn increases
the score by a minimum of 20 and at most by 25. For example, a player
may roll a total of 19, roll a 6, and then hold with 25. To put forward an
extreme case, consider a “hold at 20” game where a player has 4 scoring
turns of 25, 25, 25, and 24, yielding a score of 99. In general, stopping just
short of the goal is inadvisable, since doing so provides the opponent more
opportunity to reach the goal and win.
How likely is the extreme case? More generally, how can we calculate

theprobable outcomesof a turnwherewehold atn? As it turns out, this can
be calculated by hand in stages. For large n, we would wish to automate
the process to avoid error; but for smalln = 4, aworked example illustrates
the technique.
In Table 1, we proceed in steps. Initially, we start with a turn total k = 0

with probability 1. On each step s, we remove the probability p from turn
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Table 1. Worked example for n = 4.

Turn Total (k)
Step 0 1 2 3 4 5 6 7 8 9
0 1/1

1 1/6 1/6 1/6 1/6 1/6 1/6

2 1/6 1/6 1/6 1/6 1/6 1/6

3 7/36 1/6 7/36 7/36 7/36 1/36 1/36

4 2/9 7/36 2/9 2/9 1/18 1/18 1/36

total k = s. Consider this the probability of “passing through” turn total k.
(For the single case k = 0, we do effectively return to this turn total when
a 1 (pig) is rolled.) When “passing through” turn total k, p/6 is added to
probabilities for k = 0, k + 2, k + 3, . . . , k + 6. Consider step 0. From the
initial position, we remove the 1, and we distribute it in sixths according
to the probable roll outcomes. One-sixth of the time, we roll a 1 (pig) at
the beginning of the turn and contribute to a 0 score outcome. For rolls
of 2 through 6, we contribute 1/6 each to the “passing through” turn total
probabilities of 2 through 6.
In step 1, there is no change, since it is impossible to have a turn total of

1; so there is no contribution passing through to other turn totals. In step
2, we pass through the turn total of 2 with probability 1/6; we remove this
value and then contribute 1/6× 1/6 = 1/36 to turn totals 0, 4, 5, 6, 7, and
8. In step 3, we similarly contribute the same amount to turn totals 0, 5, 6,
7, 8, and 9.
Now all nonzero entries at turn totals ≥ 4 are the probabilities of such

outcomes for a “hold at 4” turn. We are no longer “passing through” these
totals; we hold for each. Further, the probability for turn total 0 is the
probability of rolling a pig for a “hold at 4” turn.
This process can be continued to compute probable outcomes of a “hold

at n” turn for any n. Continuing the process, the probable outcomes for a
“hold at 25” turn are shown in Figure 3.
We observe that while most “hold at 25” scoring turns will be close to

25, a turn total outcome of 30 is more than 1/6 as likely as an outcome of
25. If the “hold at 25” player has multiple high-scoring turns, that player
will overconservatively stop just short of the goal. It would be desirable
to “pace” the scoring turns so that a high-scoring turn benefits all future
scoring turns.
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Figure 3. Probability of each possible scoring outcome of a single turn using a “hold at 25” policy.

t Scoring Turns
In contrast to the “hold at n” policy, a “t scoring turns” policy allows

us to vary hold values according to a desired pace towards the goal. For
example, if t = 5, wemight initially hold at 20. Then, scoring 25 on the first
turn, we might choose lesser hold values henceforth.
Let ts be the number of scoring turns so far, i.e., turns that have increased

a player’s score. One scheme chooses a hold value that approximately
divides the remainingpoints to thegoal, (100− i), by the remainingnumber
of scoring turns in the policy, t− ts. Letting h(i, ts) be the hold value when
a player has score i and has taken ts scoring turns, then we have

h(i, ts) =
π

100− i

t− ts

∫
.

For example, suppose that a player is playing such a policy with t = 4. If
the player’s score is 51 after 2 scoring turns, the player would hold at

h(51, 2) =
π

100− i

t− ts

∫
=

π
49
2

∫
= b24.5c = 24.

In Figure 4, we compare optimal play versus “t scoring turns” play for
t ∈ [3, 6]. Since “hold at 25” was superior to other “hold at n” policies,
we would expect that t = 4 would be the best of these “t scoring turns”
policies. This expectation is correct. The optimal player has a 3.3% win
probability advantage over this “4 scoring turns” player, compared to a
4.2% advantage over the “hold at 25” player. A “hold at 25” player’s
scoring turn will increase the score in the range [25, 30], so “hold at 25” is
one kind of “4 scoring turns” player. However, by pacing the scoring across
the game with this simple policy, we reduce the optimal player advantage
further by almost 1%.
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Figure 4. The probability of an optimal player winning against a player using the “t scoring turns”
policy for different values of t.

Optimal t Scoring Turns
Wedo not claim that our previous scheme is the bestmeans of pacing the

scoring. Testing the entire space of “t scoring turns” policies is well beyond
what is computationally feasible. However, with a measure of “best,” we
can solve for the “‘best” policy, using value iteration techniques.
First, wenote that a “t scoring turns”policydoesnot take the opponent’s

score (j) into account. Rather, it concerns itself only with the player’s score
(i) and the turn total (k). The player is essentially playing solo, blind to the
opponent’s progress. If constrained to have 4 scoring turns, what measure
should we optimize to win most often against an ignored opponent?
Our objective is to choose hold values that minimize the expected number

of remaining turns to the goal. The expectation can be expressed as

Ei,k = min {Ei,k,roll, Ei,k,hold} ,

where Ei,k,roll and Ei,k,hold are the expected number of future turns if one
rolls or holds, given by:

Ei,k,roll = 1
6
[(1 + Ei,0) + Ei,k+2 + Ei,k+3 + Ei,k+4 + Ei,k+5 + Ei,k+6] ,

Ei,k,hold = 1 + Ei+k,0.

In the terminal case where i ≥ 100, we defineEi,k = 0. Solving these equa-
tions using value iteration yields an intriguing policy, shown in Figure 5.
This policy, while more difficult to remember, can be summarized by the
following instructions for computing hold values:
• After 0 scoring turns: Hold at 24.
• After 1 scoring turn: From 24 subtract 1 for each 3 points above 24.
• After 2 scoring turns: From 25 subtract 1 for each 2 points above 48.
• After 3 scoring turns: Hold at 100 − score. (Roll to win!)
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The probabilities of reaching different scores while playing this policy
are shown in Figure 6. The player using this policy will expect to reach the
goal score of 100 in an average of 12.62 turns.
On average, the optimal player will win versus the “optimal 4 scoring

turns” player with probability .514805, yielding a 3.0% win probability
advantage, compared to a 3.3% advantageover the simple “4 scoring turns”
player.

Score Base, Keep Pace, and End Race
In this section, we introduce a policy also devised by the authors that is

simple to remember, yet reacts to a lead by the opponent and has excellent
performance relative to the optimal policy.
We begin with a simple two-variable framework for decisions: Roll if

• the turn total k is less than some base value b,
• your score i plus the turn total k is still less than the opponent’s score j,
or

• either your score i or the opponent’s score j is within e points of the goal.
Alternatelyvarying b and e, wefind that b = 18 and e = 31gives the best

performanceagainst theoptimalplayer. Onaverage, theoptimalplayerwill
win versus this policywith probability .513723, yielding a 2.7% advantage.
Next, we add an additional variable p for keeping pace with a leading

opponent; yourgoal is toend the turnwitha scorewithinpof theopponent’s
score j. You now roll if:
• k < b (you must score at least b),
• i + k < j − p (you must get within p of j), or
• either i ≥ 100− e or else j ≥ 100− e (you roll to win when someone is
within e of the goal).
Successively optimizing each of the three parameters, we find that b =

19, p = 14, and e = 31 gives the best performance against the optimal
player. On average, the optimal player will win versus this policy with
probability .509431, yielding a 1.9% advantage.

Keep Pace and End Race
In this section, we introduce a modification of our previous policy that

keeps pace with the opponent differently and has even better performance.
With this policy, you roll if:
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Figure 7. Roll/Hold boundary for “score base, keep pace, and end race” and “keep pace and end
race” policies.

• either i ≥ 100− e or j ≥ 100− e, or else

• k < c +
j − i

d
.

The first condition has a player roll if either player’s score is e points or
less from the goal. In the second condition, we compute a hold value by
taking a constant c and changing it proportionally to the score difference.
If your score is ahead or behind, you use a lower or a higher hold value,
respectively.
Forpractical use,we reduce this computation to integer arithmetic. Four

commonways of converting a noninteger result of division to an integer are
integer division (truncation of digits beyond the decimal point), floor (next
lower integer), ceiling (next higher integer), and rounding (closest integer,
values halfway between rounded up).
For each of these four cases, we successively optimize each of the three

parameters c, d, and e. Table 2 shows the best policies for each case.
The best of these, utilizing rounding, is indeed the best policy yet, re-

ducing the optimal player’s advantage to a surprisingly narrow 0.922%:
• If either player’s score is 71 or higher, roll for the goal.
• Otherwise, subtract your score from your opponent’s and let m be the
closest multiple of 8. (Choose the greater multiple if halfway between
multiples.) Then hold at 21 + m

8
.
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Table 2. Optimal parameter values for “keep pace and end race” strategy, for the four cases of
rounding.

Integer Average probability of
conversion c d e optimal win

(j − i) div d 21 7 29 .504790

floor
≥

j−i
d

¥
22 8 29 .504799

ceiling
≥

j−i
d

¥
21 8 29 .504655

round
≥

j−i
d

¥
21 8 29 .504610

Recent Related Work
Johnson computed exact turn outcome probabilities for two policies:

hold at 20 points, and hold after 5 rolls [Johnson 2008].
For the similar jeopardy dice game Pass the Pigs R©, Kern contrasted

multinomial-Dirichlet inference scoring probabilities with empirical scor-
ing probabilities, giving special attention to the extreme policies of hold at
100 (goal) and hold after 1 roll [Kern 2006].
Tijms [2007], after restating two-player optimality equations for Pig

[Neller and Presser 2004] and Hog [Neller and Presser 2005], described
a game-theoretic, simultaneous-action version of Hog.
Glenn et al. made recent progress on the analysis of Can’t Stop R© [Fang

et al. 2008a,b; Glenn and Aloi 2009; Glenn et al. 2007a,b], an excellent jeop-
ardy dice game by Sid Sackson in which 2–4 players race to be the first
claiming three tracks corresponding to two-dice totals.
Smith published a survey of dynamic programming analyses of games

in general [Smith 2007].

Conclusions
Although the “hold at 20” policy for playing Pig is well known for

maximizing expected points per turn, it fares poorly against an optimal
player. The optimal policy is expected towin an average of 54.0% of games
against a “hold at 20” policy, yielding an 8.0% advantage.
We evaluated a variety of policies, including

• hold at n;
• simple “t scoring turns”1;
1Hold at the floor of (points remaining divided by scoring turns remaining).
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• optimal “t scoring turns,” minimizing expected turns;
• score base (b), keep pace (p), and end race (e); and
• keep pace (c, d) and end race (e).
Throughmany iterations of policy comparison, we find that the optimally-
tuned last policy performs very well with respect to the optimal policy:

If either player’s score is 71 or higher, roll for the goal. Otherwise, hold
at

21 + round
µ

j − i

8

∂
.

Whereas an optimal player holds an 8.0% advantage over “hold at 20”
play, this advantage is reduced to 0.922% against this newpolicy. Although
human play of Pig cannot match optimal play, it is interesting to find that
simple, good approximations of optimal play exist.
Although we have compared a number of practically-playable policy

classes for many parameters to the optimal policy, we do not claim to have
found the best human-playablepolicy for Pig. We invite readers to continue
this exploration. Readers can evaluate their policies online at http://cs.
gettysburg.edu:8080/~cpresser/pigPolicy.jsp.
Given that many jeopardy dice and card games share similar dynam-

ics [Neller andPresser 2005],webelieve the “keeppace andend race”policy
canprovideagoodapproximation tooptimalplayofmany jeopardygames.
Value iteration, policy comparison, andMonte Carlomethodsmay be used
to find the best policy parameters.
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