Opportunities for Android Projects in a CS1 Course

Ivaylo llinkin
Gettysburg College
Gettysburg, PA

iilinkin@gettysburg.edu

ABSTRACT

Mobile devices have become ubiquitous in our daily lives and
are replacing the desktop for email, social networking, daily
planner, and so on. A typical mobile device now integrates
a wide range of accessories, such as camera, GPS receiver,
accelerometer, and offers a touch-screen with gesture-based
interaction. This makes mobile devices an exciting plat-
form for software development and programming projects
for mobile devices have great potential to provide engaging
experiences for computer science majors.

This paper describes a pedagogical tool for introducing
Android in a traditional CS1 course. The goal is not to
teach Android programming, but to create a framework that
integrates seamlessly with the CS1 course structure and sup-
ports the introduction of the fundamental computer science
concepts by creating an engaging learning environment. The
framework enables the students to port their CS1 projects
to an Android device with minimal effort.

Categories and Subject Descriptors

K.3.2 [Computers and Education|: Computers and In-
formation Science Education— Curriculum

General Terms

Design, Experimentation, Human Factors

Keywords
Mobile devices, Java, Android, CS1

1. INTRODUCTION

The capabilities of modern mobile phones have opened a
rich area for creative applications. This has great poten-
tial to enrich the computer science curriculum and will con-
tinue to increase in relevance with each generation of new
students. A typical mobile phone now integrates a cam-
era, GPS receiver, accelerometer, and provides a convenient

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE’14, March 5-8, 2014, Atlanta, GA, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2605-6/14/03 ...$15.00.
http://dx.doi.org/10.1145/2538862.2538983.

way of interaction via a touch-screen interface. This allows
for greater range of exploration and could lead to program-
ming projects that have built-in motivation and the capacity
to maintain student engagement. Furthermore, experience
with developing applications for mobile devices could open
new career opportunities for graduating CS majors. In fact,
software development for mobile devices has received enor-
mous recognition in recent years, particularly since the in-
troduction of the iOS and Android operating systems, with
Windows CE, Java ME, and Blackberry bringing the first
wave of mobile technology in the curriculum [10, 12, 13,
14]. Of the modern platforms, Android, which is based on
the Java programming language, has the potential for wide
adoption due to the popularity of Java in the computer sci-
ence curriculum.

Since these technologies have a fairly steep learning curve
a lot of the effort has naturally focused on adopting them in
the upper-level courses and in senior capstone projects [3, 7,
11, 15, 16]. There have also been successful efforts to inte-
grate Android programming in CS2 [2, 8, 9], and in fact, it
is easy to see the potential for using Android in a CS2 course
without significant disruption to the course structure, par-
ticularly for introducing event-driven GUI programming and
the Model-View-Controller pattern. Finally, creative ideas
have been reported for introducing mobile programming at
the CSO and high-school level [1, 19, 20, 21]. The latter ap-
proaches rely on the App Inventor framework which brings
the strengths of the visual programming environments of
Scratch and Alice to mobile application development.

While Android has been integrated to some extent at most
levels of the curriculum, little has been reported of its adop-
tion at the CS1 level. In a sense this is understandable —
approaches that work at the CSO0 level (e.g. App Inventor)
aim for a gentler high-level introduction to programing with
a focus on application design, and are therefore, less likely to
enhance instruction in CS1. The fact that Android is based
on Java makes it tempting to introduce it in CS1 directly,
but the programming model is quite different and even a
Hello World application is fairly involved, which is likely to
detract from the main goals of CS1. Direct introduction
of Android is feasible in CS2, where programming maturity
is expected and the possibilities for creative projects that
fit neatly with material are likely to enhance instruction.
A promising approach targeting the CS1/CS2 level is de-
scribed in recent work on the Sofia framework [6] using a
micro-world library designed to fit within an objects-early
CS1 curriculum. Positive results are reported with using

the ALE game development platform for Android for a final
project at the end of a CS1 course [4].

The contribution of this paper is to suggest opportunities
for introducing Android in CS1 through a pedagogical tool
that is compatible with an objects-late approach and can be
introduced very early in the CS1 curriculum. The paper in-
troduces a framework, called CS1App, that fits seamlessly
with the CS1 course structure and hides away all of the
complexity of setting up an Android application. The stu-
dents can deploy their projects on an Android device with
straightforward modifications to their desktop applications.

The main difficulty in integrating Android in CS1 is that
the event-driven model and activity life-cycle in an Android
application require fairly sophisticated programming back-
ground. The Android requirement that applications should
not block the main UI thread makes it difficult to obtain
touch and keypad input and leads to a flow of control that
is quite different from the straightforward sequential nature
of early examples in a typical CS1 course. The advantage of
the proposed framework is that it works around this limita-
tion and provides blocking input, for both touch and keypad,
so that from the student’s perspective input works similar
to the Scanner and the flow of control has the familiar na-
ture. This makes it possible to port easily desktop applica-
tions to Android without knowledge of object-oriented pro-
gramming. By contrast, the Sophia framework, for example,
still retains the event-driven model (disguised to some ex-
tent) and requires some familiarity with classes and objects.
While both Sophia and ALFE offer a wide range of capabili-
ties, that brings a higher level of complexity. The proposed
framework has a very low requirements threshold, yet it still
affords opportunities for creative projects.

The design of the proposed framework was guided by the
following objectives:

e require no knowledge of Android development

e require no knowledge of object-oriented concepts (in-
heritance, polymorphism, classes, objects, etc.)

e have minimal impact on the planned course schedule

The need for the first goal is obvious if the framework
is to be used in CS1. The second goal is motivated by the
fact that we use the objects-late approach and cannot expect
familiarity with object-oriented concepts. We only expect
knowledge, introduced as needed, at the level of using Scan-
ner, Random, or String — i.e. an intuitive understanding
that a dot followed by a fairly obvious phrase, accomplishes
what the phrase indicates, such as scanner.nextInt() or
myName.length(). The fact that we target the objects-late
level means that students exposed to the objects-early ap-
proach will have no difficulty using the framework. Finally,
our last goal acknowledges the fact that Android should be
introduced only if it does not disrupt the instructor’s plan.

We remark that our goal is not to teach Android pro-
gramming. In fact, students who use the framework will
not learn anything about Android. Yet, they will be able
to create with little effort applications that run on Android
devices.

Source code for several examples of popular programming
projects (Tic-Tac-Toe, Memory Tiles, Hangman, etc.), doc-
umentation, and a compiled version of the library are avail-
able at http://www.cs.gettysburg.edu/"ilinkin/cslapp

Our approach is inspired by the numerous graphics li-
braries that have been developed to support teaching in CS1.
A graphics library provides an intuitive interface to the stu-
dents and helps the instructors create engaging assignments
to achieve the learning goals. The concepts of drawing prim-
itive shapes are so familiar to the students that a graphics
library does not get in the way of learning, and instead,
provides a fun and rewarding experience.

The proposed framework is essentially a graphics library
for Android. It grew out of a Java graphics library for desk-
top applications written to support our CS1 and since the
Android version retained the same interface, the student
projects that worked successfully in the past can now be
deployed on an Android device. The framework requires
little on the part of the instructor in terms of updating the
assignment write-ups and it requires little work from the stu-
dents to modify their projects, especially compared to the
excitement factor of running a non-trivial CS1 application
on an Android device and sharing it with friends.

In the rest of the paper Section 2 presents the framework
and illustrates the differences between a desktop and an An-
droid application (in particular, subsections 2.2, 2.3, and 2.5
show how to handle touch and keypad input); Section 3 of-
fers ideas for programming projects; Section 4 discusses how
to integrate the framework with DrJava; and Section 5 closes
with concluding remarks.

2. PROPOSED FRAMEWORK

The proposed framework grew out of a graphics library
that we have used for teaching CS1 in Java for a number of
years. The graphics library offers the standard capabilities
for drawing primitive 2D shapes, text, and images on a can-
vas, and provides an interface to read input from the user.
The design and API is similar to that of the graphics library
created by John Zelle [23] for introducing computer science
through Python.

The graphics library provides an object-oriented interface
and a procedural-style interface. Since our course is designed
as objects-late we use the procedural-style interface, but ob-
jects are supported as well. For example, here is how one
might draw a red circle of radius 10 centered at (30, 20):

(a) canvas.drawCircle(30, 20, 10, "red");

(b) Circle c = new Circle(new Point (30, 20), 10);
c.setColor("red");
c.draw();

We use the first style and the students quickly guess how
to draw other shapes, text, and images.

This simple interface is sufficient to design a number of
engaging projects that enhance CS1 instruction, a notion
that has been recognized for some time in the computer
science education community [5, 17, 18, 22].

2.1 Android App Structure

One of the very first desktop applications that we typically
develop in class is to draw a smiley face given its center and
radius based on pre-defined face proportions. This has been
an effective example for introducing methods, parameters,
and variables in a context that is fun and easy to set up.

Figure 1 shows a comparison between a desktop and an
Android application for drawing a smiley face. There are
only two differences:

e the Android version does not have a main method
e the Android version must include extends AndroidApp

The base class AndroidApp is the one that sets up the view
and activity of the application and the process is completely
transparent to the students — they don’t need to be familiar
with the concept of inheritance to appreciate the need for
the extends clause, since they are building an Android app.

No change is needed to the student code to build and run
the application on an Android device:

class Smiley

{
// draw a color smiley face of size r at (x, y)
void drawSmiley(int x, int y, int r, String color)
{
// code to draw the smiley face
}
// run/test the application
void run()
{
drawSmiley (30, 20, 10, "yellow");
}
// we ignore the main method and use run() instead
public static void main(String[] args)
{
new Smiley().runQ);
}
}
class SmileyApp extends AndroidApp
{
// draw a color smiley face of size r at (x, y)
void drawSmiley(int x, int y, int r, String color)
{
// code to draw the smiley face
}
// run/test the application
void run()
{
drawSmiley(30, 20, 10, "yellow");
}
}

Figure 1: Comparison between a desktop and an
Android application for drawing a smiley face.

2.2 Handling Keypad Input

The framework offers functionality for obtaining user in-
put through an API that is similar to the Scanner (Fig-
ure 2 (a)). For example,

float gpa = canvas.readFloat("Enter your GPA");

Unlike the Scanner the framework also includes function-
ality for user input via selection lists (Figure 2 (b)):

String color = canvas.readSelection("Pick a color",
"red", "green", "blue");

It is important to note that the canvas.readXXXX calls
are blocking, i.e. execution is suspended until the user has
entered the data in the dialog box. One of the difficulties
in using Android in CS1 is that the event-driven model of
a standard Android application requires non-trivial under-
standing of object-oriented concepts. The framework re-
moves this obstacle by providing blocking calls that behave

exactly as the Scanner nextXXXX calls, so the flow of control
remains the same as in a desktop application.

@ 5554Widfire10 PR) @ 5554 Widfire10 Y

Enter your GPA
Pick a color

red

(a) (b)

Figure 2: Screenshots of input dialogs.

2.3 Handling Touch Input

Touch input has greatly enhanced the richness of user ex-
perience on mobile devices. The framework makes it possible
to detect and handle touch events by providing information
about the location of the event, the number of taps (either
1 or 2), and the shape on which the event occurred (for
students familiar with objects):

Touch touch = canvas.waitForTouch();
int x = touch.getX();

int y = touch.getY();

int taps = touch.getTaps();

Again, note that this is a blocking call, so the flow of
control remains the same as in a desktop application. We
can now combine keypad and touch input to enhance the
example from Figure 1 by rewriting the run() method:

void run()

{

// could wrap in a while (true) { ... } loop

int radius = 40;

String color = canvas.readSelection("Pick a color",

"red" s ||green|| s "blue“) ;
Touch touch = canvas.waitForTouch();
if (touch.getTaps() == 2)
radius = 2*radius;

drawSmiley(touch.getX(), touch.getY(), radius, color);

}

2.4 Hangman App

In this section we discuss the conversion between a desk-
top and an Android application in a more complicated ex-
ample. We use the Hangman game to illustrate how little
is required to port a non-trivial assignment to an Android
device.

The Hangman game is one of the popular CS1 assign-
ments. It requires no lengthy introduction and provides an
opportunity to exercise in a fun and engaging way a number
of fundamental computer science concepts (e.g. methods,
control structures, for loops, and linear structures (strings)).
Creating a desktop Hangman application provides a sense
of accomplishment for the students, who are just starting to
learn about programming; it is all the more rewarding to be
able to run it on a personal device and share it with friends.

This is a fairly substantial assignment (a typical submis-
sion is about 200 lines of code), and yet it requires little

modification to convert it to an Android application. In
fact, since the Android framework shares the same inter-
face as the desktop graphics library, other than the changes
illustrated in Figure 1 (removing the main() method and
adding the extends clause), the only other modification is
to replace:

System.out.print ("Guess a character:");
char guess = (char) System.in.read();

with:
char guess = canvas.readChar("Guess a character:");

A more interesting variation is to enhance the user expe-
rience via touch input. Tapping one of the letters in the al-
phabet row (see Figure 3) can provide the user’s next guess.

SRR

@ 5554Wildfire10

Figure 3: Student submission for Hangman project.

Students familiar with objects could use touch. getShape ()
to find which letter was selected and can then interact with
the shape object directly. Students who come from objects-
late background can use the following strategy — in the
Hangman app the alphabet spans the whole width of the
canvas, and therefore, the index of the selected letter can be
found with a simple divison. Thus, the keypad input can be
replaced with:

Touch touch = canvas.waitForTouch();
int index = touch.getX() / letterDiam;
char guess = alphabet.charAt(index) ;

(A careful student might also consider checking if the y
coordinate of the touch is close to the alphabet baseline.)

While this may seem a contrived example, it actually gen-
eralizes to a wide range of applications. In particular, it can
be applied to many board games (e.g. Tic-Tac-Toe, Mem-
ory Tiles, Minesweeper, etc.) which have a natural reference
point from which one can derive the row and column of a se-
lected object in a grid:

Touch touch = canvas.waitForTouch();
int row = (touch.getY() - BOARD_ULY) / CELL_SIZE;
int col = (touch.getX() - BOARD_ULX) / CELL_SIZE;

2.5 Handling Fling Input

The framework supports a variation of the touch input
that is recognized as a fling across the device screen. For
fling events the framework provides information about the
start and end points of the gesture, and its direction and
velocity. The following example illustrates a possible appli-
cation of this gesture — the goal is to fling the image in the
top-left corner, so that it floats on top of the image in the
bottom-right corner (see Figure 4):

void run()

{
int birdX = 60, birdY = 60;
int pigX = 420, pigY = 260;

// draw "background.png", "pig.png", "bird.png"

Fling fling = canvas.waitForFling();
int dx = fling.getDx();
int dy = fling.getDy();

int speedX = 3, speedY = 6;
while (distance(birdX, birdY, pigX, pig¥) > 15 &&
isVisible(birdX, birdY)) {
birdX = birdX + speedX*dx;
birdY = birdY + speedY*dy;

canvas.sleep(.01);

// clear canvas, redraw scene

The two missing methods are straightforward to imple-
ment, so this is essentially the complete code for the app. A
simple modification can make this even more compelling by
choosing a random starting x position for the target image.

= Q

@ 5554:Wildfire10

4
:

Figure 4: Example app for handling fling events.

3. PROGRAMMING PROJECTS

This section introduces examples of programming projects
that we have used for several years. With the introduction
of the framework we created Android versions as well.

3.1 NimGame and MineSweeper

The NimGame is an assignment that we use early in the
semester to introduce methods, control structures, boolean
expressions, and while loops. The students build a variation
of a Nim game in which two players take turns removing
coins from two piles with the restriction that a player must
remove at least one, but no more than five, coins per turn
from one of the rows (or the same number from both rows).
Converting this project to an Android app is straightforward
and follows the same pattern as outlined in Hangman, Sec-
tion 2.4. An interesting user-interface challenge posed in
NimGame is how to distinguish whether to remove coins
from a single row or from both rows. We find which coin
has been selected (using the strategy as in Hangman to se-
lect a letter) and remove from a single row on single tap and
from both rows on double tap.

MineSweeper was assigned as a final project just prior to
the development of the framework. A student submission

was converted to an Android application as proof-of-concept.
In fact, despite its greater complexity compared to the other
projects it only required the inclusion of the code portion at
the end of Section 2.4 for finding the row and column of the
selected cell. Had the framework been available at the time,
it would have certainly been a nice way for the students to
end the course with their own version of MineSweeper on
their phones.

Representative images of the applications are shown in
Figures 5 and 6.

4. INTEGRATION WITH DRJAVA

In this section we discuss our experience with using the
proposed framework with DrJava. The simple and intuitive
interface of DrJava has made it our choice of teaching en-
vironment in CS1. In CS2 we transition to the significantly
more complex, but also more powerful, Eclipse.

Integrating Android and the proposed framework with
Eclipse is straightforward. Eclipse manages the required
Android plug-ins and the framework only needs to be in-
cluded as an external . jar file to the project. Courses using
Eclipse in CS1 will have no difficulty editing, building, and
running the examples from the previous sections.

DrJava provides no integration Android, but the setup is
quite manageable. The students can still edit and compile
their Android applications, provided that they add to the
class path the .jar file from the Android distribution and
the .jar file of the framework via the Edit— Preferences—
Resource Locations menu. This step is done only once and
detailed instructions are provided.

Running the application and setting up a project is cur-
rently done outside of DrJava via a simple tool, which lets
the students set up a new project, load an existing project,
and run a loaded project. Since an Android application
needs to have a particular directory structure, creating a
project cannot be done in DrJava. Thus, before starting
a new project the students need to run the setup tool and
choose a location for the project. The tool automatically
builds the required directory structure and creates a .java
skeleton application file for the project. This file can then be
opened and the Edit— Compile cycle can be carried out in
DrJava. Running the project is done again via the external
tool which loads the app on the emulator (the emulator is
started automatically when the tool is started).

Using the external tool does not hinder development, since
it is only used once to setup the project structure. Editing
and compiling is still done in DrJave and only after the com-
pilation errors have been fixed and the project is ready to
run the students need to hit the Run button in the external
tool instead of the Run button in DrJava. We are exploring
ways to integrate the setup tool functionality with DrJava
via the Language menu with Android as an option.

S. CONCLUSION

This paper described a framework for Android application
development and offered examples of programming projects
that are feasible at the CS1 level. The goal is not to teach
the intricacies of Android programming, but to provide a
framework that seamlessly integrates with the course struc-
ture and offers another vehicle of introducing the fundamen-
tal concepts in a fun and engaging way. Just as graphical
desktop application are a great source of motivation, so are

=N

@ 5554Wildfire10

BLUE player's move

Figure 5: Student submission for NimGame project.

[ESyREy =

@ 5554:Wildfire10

b d.
ed .

.*.
*N e

=

* |

Figure 6: Student desktop submission for
MineSweeper project converted to Android ap-
plication as proof-of-concept.

applications that the students have built on their own that
they can share with their peers through their own phones.
Testing and debugging can be a source of frustration, if
the students attempt to build the Android version directly.
Uploading to the emulator has a noticeable delay and the
idle time may sap some of the energy that could be devoted
to the project. (This can be mitigated by plugging in an
Android device, so that the application is run on the device
instead of the emulator, which is significantly faster.) Al-
ternatively, the students can first build the desktop version
and then work on the minor changes that are required to
convert it to an Android app. Thus, they can build on the
excitement of having a finished product and invest the extra
effort to gain an even greater sense of accomplishment.

6. REFERENCES

[1] K. Ahmad and P. Gestwicki. Studio-based learning
and App Inventor for Android in an introductory CS
course for non-majors. In Proc. 44th SIGCSE, pages
287292, New York, NY, USA, 2013. ACM.

[2] A. Allevato and S. Edwards. Robolift: Engaging CS2
students with testable, automatically evaluated
Android applications. In Proc. 43rd SIGCSE, pages
547-552, New York, NY, USA, 2012. ACM.

8]

[4]

[5]

(6]

[7]

8]

[9]

(11]

(12]

(13]

J. Andrus and J. Nieh. Teaching operating systems
using Android. In Proc. 43rd SIGCSE, pages 613—618,
New York, NY, USA, 2012. ACM.

J. Bayzick, B. Askins, S. Kalafut, and M. Spear.
Reading mobile games throughout the curriculum. In
Proc. 44th SIGCSE, pages 209-214, New York, NY,
USA, 2013. ACM.

K. Bruce, A. Danyluk, and T. Murtagh. A library to
support a graphics-based object-first approach to CS1.
In Proc. 82nd SIGCSE, pages 6—10, New York, NY,
USA, 2001. ACM.

S. Edwards. Re-imagining CS1/CS2 with Android
using the Sofia framework. In Proc. 44th SIGCSE,
pages 759-759, New York, NY, USA, 2013. ACM.

J. Fenwick, Jr., B. Kurtz, and J. Hollingsworth.
Teaching mobile computing and developing software
to support computer science education. In Proc. 42nd
SIGCSE, pages 589-594, New York, NY, USA, 2011.
ACM.

M. Goadrich, M. Jadud, and J. Jennings. Exploring
the use of Android in CS2. In Proc. 24th CSEEET
(SMACK ’11), Honolulu, HI, USA, 2011.

S. Heckman, T. Horton, and M. Sherriff. Teaching
second-level Java and software engineering with
Android. In Proc. 24th CSEE&T, pages 540542,
Washington, DC, USA, 2011. IEEE Computer Society.
S. Kurkovsky. Engaging students through mobile game
development. In Proc. 40th SIGCSE, pages 4448,
New York, NY, USA, 2009. ACM.

S. Loveland. Human-computer interaction that reaches
beyond desktop applications. In Proc. 42nd SIGCSE,
pages 595-600, New York, NY, USA, 2011. ACM.

Q. Mahmoud and A. Dyer. Integrating BlackBerry
wireless devices into computer programming and
literacy courses. In Proc. 45th SE, pages 495-500, New
York, NY, USA, 2007. ACM.

Q. Mahmoud and A. Dyer. Mobile devices in an
introductory programming course. Computer,
41(6):108-107, June 2008.

(14]

(21]

(22]

23]

Q. Mahmoud, T. Ngo, R. Niazi, P. Popowicz,

R. Sydoryshyn, M. Wilks, and D. Dietz. An academic
kit for integrating mobile devices into the CS
curriculum. In Proc. 14th SIGCSE, pages 40—44, New
York, NY, USA, 2009. ACM.

J. Muppala. Teaching embedded software concepts
using Android. In Proc. 6th WESE, pages 32-37, New
York, NY, USA, 2011. ACM.

D. Riley. Using mobile phone programming to teach
Java and advanced programming to computer
scientists. In Proc. 43rd SIGCSFE, pages 541-546, New
York, NY, USA, 2012. ACM.

E. Roberts. A C-based graphics library for CS1. In
Proc. 26th SIGCSE, pages 163-167, New York, NY,
USA, 1995. ACM.

E. Roberts and A. Picard. Designing a Java graphics
library for CS1. In Proc. 6th CTC and 3rd ITiCSE,
pages 213-218, New York, NY, USA, 1998. ACM.

K. Roy. App Inventor for Android: report from a
summer camp. In Proc. 43rd SIGCSE, pages 283—-288,
New York, NY, USA, 2012. ACM.

E. Spertus, M. Chang, P. Gestwicki, and D. Wolber.
Novel approaches to CSO with App Inventor for
Android. In Proc. 41st SIGCSE, pages 325-326, New
York, NY, USA, 2010. ACM.

D. Wolber. App Inventor and real-world motivation.
In Proc. 42nd SIGCSE, pages 601-606, New York,
NY, USA, 2011. ACM.

U. Wolz and E. Koffman. simplelO: A Java package
for novice interactive and graphics programming. In
Proc. 4th ITiCSE, pages 139-142, New York, NY,
USA, 1999. ACM.

J. Zelle. Python Programming: An Introduction to
Computer Science 2nd FEdition. Franklin, Beedle &
Associates Inc., Wilsonville, OR, USA, 2010.

