Network Routing

- A major component of the network layer routing protocol.
- Routing protocols use routing algorithms.
- Job of a routing algorithm: Given a set of routers with links connecting the routers, find a “good” path from the source to the destination.
Modeling a Network

• A network can be modeled by a graph.
 - Routers/switches are represented by nodes.
 - Physical links between routers/switches are represented by edges.
 - Attached computers are ignored.
 - Each edge is assigned a weight representing the “cost” of sending a packet across that link.

• The total cost of a path is the sum of the costs of the edges.
• The problem is to find the least-cost path.
Routing Algorithms

- Routing algorithms that solve a routing problem are based on shortest-path algorithms.
- Two common shortest-path algorithms are Dijkstra’s Algorithm and the Bellman-Ford Algorithm.
- Routing algorithms fall into two general categories.
Link-State Algorithms

• The network topology and all link costs are known.

• **Example:** Dijkstra’s Algorithm.

• More complex of the two types.

• Nodes perform independent computations.

• Used in **Open Shortest Path First (OSPF)** protocol, a protocol intended to replace RIP.
Distance-Vector Algorithms

• Nodes receive information from their directly attached neighbors.
• Example: Bellman-Ford Algorithm.
• Simpler of the two types.
• May have convergence problems.
• Used in Routing Information Protocol (RIP).
Dijkstra’s Algorithm

• Named after E. W. Dijkstra.
• Fairly efficient.
• Iterative algorithm.
• At the first iteration, the algorithm finds the closest node from the source node which must be a neighbor of the source node.
• At the second iteration, the algorithm finds the second-closest node from the source node. This node must be a neighbor of either the source node or the closest node found in the first iteration.
Dijkstra’s Algorithm

• At the third iteration, the algorithm finds the third-closest node from the source node. This node must be a neighbor of either the source node or one of the first two closest nodes.

• The process continues. At the k^{th} iteration, the algorithm finds the first k closest nodes from the source node.
Example

The source node is \(s = 1 \).
Example

<table>
<thead>
<tr>
<th>Iteration</th>
<th>N</th>
<th>D_2</th>
<th>D_3</th>
<th>D_4</th>
<th>D_5</th>
<th>D_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{1}</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>{1,3}</td>
<td>3</td>
<td></td>
<td>4</td>
<td>∞</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>{1,2,3}</td>
<td></td>
<td>4</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>{1,2,3,6}</td>
<td></td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>{1,2,3,4,6}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>{1,2,3,4,5,6}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The bottom entry in each D-column is the minimum cost to go from the start node 1 to that node.
• **Question**: How can you determine the path which gives the minimum cost to a destination node?

• **Answer**: The table not only gives the minimum costs. It also gives the predecessor node of each node along a least-cost path from the source node. By keeping track of the predecessor nodes, we can construct a least-cost path.
Least-Cost Path Tree
Routing Table for Source Node 1

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Node</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Complexity of Dijkstra’s Algorithm

• Suppose there are n nodes not counting the source node.

• In the first iteration, we need to search through n nodes to determine the node not in N with minimum cost.

• In the second iteration, we need to check $n-1$ nodes.

• In the third iteration, $n-2$ nodes. And so on.
Complexity of Dijkstra’s Algorithm

• The total number of nodes we need to examine is
 \[1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2} \]

• Thus, Dijkstra’s Algorithm as presented is \(O(n^2) \)

• A more sophisticated implementation of the second step using a heap would find the minimum in logarithmic instead of linear time. This improves the performance to \(O(n \log n) \)