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Abstract. In this paper, we solve and visualize optimal play for All
Yellow Zombie Dice, a simplification of the Zombie Dice jeopardy dice
game by Steve Jackson [1] where we assume that all dice have the same
outcome distribution. We present a spectrum of All Yellow Zombie Dice
human-playable strategies that trade off greater play complexity for bet-
ter performance, and collectively clarify key considerations for excellent

play.

1 Introduction

Zombie Dice is a dice game first published in 2010 by Steve Jackson [1]. It is
a jeopardy dice game [4, Ch. 6] in the Ten Thousand dice game family [2]|. In
this paper, we analyze a simplified variant, All Yellow Zombie Dice, computing
optimal play as well as providing additional insights to gameplay.

We begin by describing the rules of Zombie Dice, and a variant thereof,
All Yellow Zombie Dice. We define 2-player optimality equations for All Yel-
low Zombie Dice and our method for solving them. After visualizing the opti-
mal play policy, we share observations on the optimal roll /hold boundary. We
then present an array of human-playable policies we have devised along with
their performances against the optimal policy. The policies demonstrate differ-
ent design trade-offs of greater complexity for greater win rates, and highlight key
play policy considerations. Finally, we discuss future work and summarize our
conclusions.

2 Rules

Zombie Dice (ZD) is a dice game for two or more players using 13 nonstandard
six-sided dice described in Fig. 1.

A turn consists of a sequence of player dice rolls where rolled brains and
shotguns are set aside. The turn ends when, after rolling, the player either decides
to hold (i.e. stop rolling) and score the total number of brains rolled, or has rolled
three or more shotguns, ending the turn and scoring 0 points.

At the beginning of the turn, three of the supply of 13 dice are drawn at
random and rolled. Any rolled brains and shotguns are then set aside. If 3 or
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Color | Number | Brain | Shotgun | Footprint
of Dice | Sides | Sides Sides

Green |6 3 1 2
Yellow | 4 2 2 2
Red 3 1 3 2

Fig. 1. Zombie Dice outcome distributions

more shotguns are set aside, the turn ends scoring 0 points. Otherwise, the player
chooses either to hold, scoring the number of brains and ending their turn, or
to roll again. To roll again, dice are drawn at random and added to any rolled
footprints until there are three dice to roll. (If there are no dice to draw, keep
track of the number of brains set aside, and add all rolled brain dice back into
the dice supply, and continue drawing dice at random.) Then those three dice are
rolled, any brains and shotguns are again set aside, and we repeat the process
described above.

A round consists of each player taking one turn in sequence. When a round
ends with any player having 13 or more points, a player having the most points
wins. If two or more players are tied with the most points (13 or more), another
round is played between those players only. In this paper, we will focus on the
two-player ZD game, so we can say that a 2-player game ends when a round
concludes with a single winner having the most points with 13 or more points.

We will denote red, yellow, and green dice as R, Y, and G, respectively,
with brain, shotgun, and footprint rolls denoted as B, S, and F, respectively.
We denote a brain roll of a green die as BG. Consider this example round of
two-player play:

— Player 1 draws G, G, and Y dice and rolls FG, FG, and SY. SY is set aside.
We have zero (fewer than three) S set aside, so the player can hold (scoring
zero B) or roll. The player chooses to roll, drawing a third random die to join
the two FG dice. A G is drawn and the three G are rolled as BG, SG, and
FG. BG and SG are set aside. We have two S set aside, so the player can
hold (scoring one B) or roll. The player chooses to roll, drawing two R dice
at random, and rerolling FG with these to get BG, SR and SR. All three B/S
dice are set aside, totaling four S. With three or more S, the turn ends with
no score change. (All dice are returned to the supply at the end of a turn.)

— Player 2 draws three G dice and rolls BG, BG, and FG. The two BG dice
are set aside. Player 2 with no S set aside chooses to roll, draws a G and Y,
and rerolls the FG with these to get BG, BY, and FG. The two B dice are
set aside for a total of four B dice. Player 2 with no S chooses to roll, draws
Y and R dice, and rerolls the FG with these to get BY, SG, and SR. These
are all set aside for a total of five B and two S dice set aside. Although player
2 could roll again with less than three S set aside, player 2 decides to hold,
scoring five points, one for each B set aside, ending the round.
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The game thus consists of roll/hold risk assessments in a race to achieve a
unique top score of 13 or more points, playing additional tie-breaker rounds with
tied leaders as necessary. Given the player scores, the numbers of colored B and
S dice set aside, and the current locations of non-S dice of different colors, should
the current player roll or hold so as to maximize the probability of winning?

2.1 All Yellow Zombie Dice (AYZD)

It can often be insightful to first analyze a simplification of a game. In this case,
we create a 2-player variant we call All Yellow Zombie Dice (AYZD), where all 13
dice are yellow with two B, two S, and two F sides. The three roll outcomes are
equiprobable for all dice and we need not include dice colors nor their locations
as part of our state description for this simplified game.

3 AYZD Optimality Equations and Solution Method

We here define optimality equations for the AYZD two-player game.

Nonterminal states are described as the 5-tuple (p,i,7,b, s), where p is the
current player number (1 or 2), ¢ is the current player score, j is the opponent
score, b is the turn total (number of brains set aside), and s is the number
of rolled shotguns set aside. P(p,i,7,b,s) will denote the probability of player
p winning in state (p,i,j,b,s) under the assumption of optimal play, i.e. each
player plays so as to maximize one’s own expected win probability.

Terminal states consist of a player 1 win or player 2 win. (Draws are not
allowed, as tie-breaker rounds are mandated.) Player 1 wins at the beginning of
their turn (p = 1,b = 0) when player 1 has achieved the goal score (i > g where
g = 13) and player 2 ended their turn with a lesser score (j < 7). Player 2 wins
on their turn (p = 2) when player 2’s score plus their turn total exceed both the
goal score and player 1’s score (i > 13 and ¢ > j), at which point player 2 can
and should hold, winning the game.

Let P.on(b, s) be the probability of rolling b brains and s shotguns (and thus
3 — b — s footprints) on a roll of 3 dice:

_ GG _ 2
Pron(b, s) = 33 9bls!(3—b—s)!

The probability of winning with a roll P, (p,i,J,b, s) under the assumption
of optimal play thereafter is:

s st ..
Proll(pyi,j7 b’ S) = 234‘20 §+:0(PT011(b+7 s+)P(p7Za]7 b + b+7 s+ 3+))
_st ..
3 S (Pon(bt, M) (1 — P(3 — p, ,4,0,0)))

where b™ and s denote the number of additional brains and shotguns rolled.
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The probability of winning with a hold Pyoa(p, 4, j, b, s) under the assumption
of optimal play thereafter is:

Phold(p7i;j7b78) = (1 _P(3 _puj;i—’_baO? 0))

Then the probability of winning P(p,1,j, b, s) under the assumption of opti-
mal play is:

P(p7i7j7 b7 8) = maX(Proll(p7i7j7 b7 S)yphold(p7i7j7 b7 S))

Players can tie at or above the goal, requiring a tiebreaker round. Players can
tie within a tiebreaker round as well, requiring another tiebreaker round. Since
there is no limit to tiebreaker rounds and no limit to the turn total, we must
create an artificial upper limit for computational purposes. We have chosen twice
the goal score (M = 2¢g = 26) as this bound, and observe that computational
results do not change for M = 3g, 4g, or g, assuring us that we capture optimal
play behavior within such bounds.

Having bounded our nonterminal state space representation such that p €
{1,2},0 < 4,5,b < M,s € {0,1,2}, we apply value iteration as in [5| until the
maximum probability change of an iteration is less than € = 1074,

4 AYZD Optimal Policy

The optimal roll/hold boundaries of AYZD are shown in Fig.2. Each subfigure
depicts a 3-dimensional (3, j, b) roll /hold boundary for each possible pair of player
p and rolled s. Axes are player score i, opponent score j, and turn total b. Given a
current state inside or outside of the appropriate solid, an optimal player should
roll or hold, respectively.

We first observe a few expected similarities between these roll/hold solids.
First, the i+ b = 13 diagonal plane indicating a rolling for the goal score appears
in situations where player(s) are close to the end of the game or have little to
risk with many dice to roll. Player 2 should exceed (s < 2) or meet (s = 2)
player 1’s score when player 1 has reached the goal score, so the planes ¢ +b = j
or i +b=j+ 1 are also a prominent hold planes. As a player has fewer dice to
roll, play becomes more conservative.

There are some interesting differences and subtleties to observe as well. Player
1 plays more aggressively than player 2 with higher minimum hold values with
all other state variables being equal. Also, there are interesting nonlinearities
when player 1 seeks to not just reach 13 points, but to far enough exceed 13 so
as to make it unlikely that player 2 will exceed their final score. Player 2, having
the opportunity to exceed player 1’s final score, has an advantage and generally
plays so as to keep within striking distance of player 1’s score.

Most interesting and complex are the roll/hold boundaries when a player
has rolled one shotgun. Here we observe nonlinearities in the roll/hold surface
for both players. Whereas one might approximate player with no shotguns or
two shotguns as “always roll” and “hold at 17, respectively, the roll/hold surface
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(e) Player 1 with two shotguns rolled (f) Player 2 with two shotguns rolled

Fig. 2. AYZD optimal play visualization. A player in a state inside or outside the gray
solid should roll or hold, respectively. Subfigures are by p, s cases, and axes follow 1,

7, b state variables.
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shape is relatively complex when the current player has rolled one shotgun and
player scores are not close to the goal.

We also observe that, during tiebreaker rounds, player 1 should hold at 6/3/1
when 0/1/2 shotgun(s) have been rolled, respectively.

5 Human-Playable Policies

In this section, we present a range of human-playable policies mapping states
to roll/hold actions that trade off greater complexity for greater win rate. By
human-playable, we mean that all roll /hold decisions may be made through sim-
ple mental math. As we will see, these policies range from extremely simple rules
to very-complex sub-cases requiring memorization of several constants in order
to approximate roll/hold surfaces.

Each policy is evaluated against the optimal policy with each having equal
probability of playing first. Policy evaluation follows the same value-iteration-
style algorithm of [6]. The performance of each is summarized in Fig. 3.

Policy Difference
Fixed Hold-At | -0.0274
Minh Cases -0.0133

Llano Cases -0.0118
Neller Cases -0.0100

Fig. 3. Differences between human-playable and optimal policy win rates

We present each policy as a method that returns whether or not to roll in
the given state.

5.1 Fixed Hold-At Policy

First, we consider a Fixed Hold-At Policy (Algorithm 1) where we need only
remember a few turn total thresholds.

Requiring memorization of only a few cases and two hold-at constants (4 and
1), Algorithm 1 reduces the optimal play gap to ~2.74%.

5.2 Minh Cases Policy

The Minh Cases Policy (Algorithm 2) elaborates the Fixed Hold-At Policy (Algo-
rithm 1) for situations where a player has rolled 1 shotgun.

In this situation, if the opponent’s score is greater than or equal to 8, the
current player will aim for the winning score of 13 or try to exceed the opponent’s
score by 3 brains if the opponent has reached 10 or more. This policy results in
an optimal play gap of ~1.33%.

The policy relies on four non-goal score constants to keep in mind (8, 3,
4, and 1) which is relatively simple but still provides a close approximation to
optimal play.
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Algorithm 1: Fixed Hold-At Policy

© 00 N O U A W N =

Input : player p, player score i, opponent score j, turn total b, shotguns rolled

s
Output: whether or not to roll
ifp=2Aj>13Ai+b<jthen // When player 2 with j > goal...
| return true // and holding would lose, roll.
else if s =0 then // Keep rolling with O shotguns.
| return true
else if s =1 then // Hold at 4 with 1 shotgun.
| return b < 4
else // Hold at 1 with 2 shotguns.
| return b <1
end if

Algorithm 2: Minh Cases Policy

© 00 N O U kA W N =

I
W N = O

Input : player p, player score i, opponent score j, turn total b, shotguns rolled

s
Output: whether or not to roll
ifp=2A5>13Ai+b<jthen // When player 2 with j > goal...
| return true // and holding would lose, roll.
else if s =0 then // Keep rolling with O shotguns.
| return true
else if s =1 then // With 1 shotgun,
if j > 8 then // if opponent’s score j > §,
| return i+b<max(13, j+3) // win (with lead of 3 if j >10),
else // else hold at 4.
| return b < 4
end if
else // Hold at 1 with 2 shotguns.
| return b < 1
end if

5.3 Llano Cases Policy

Algorithm 3, “Llano Cases Policy”, breaks down cases by player p and number
of shotguns rolled s. Policies for each player are near identical, with a minor
difference for zero shotguns rolled.

Though not as computationally simple as the previous policies, this policy

requires the memorization of few constants when playing below the goal score
and allows the player to play nearly the same each game, regardless of whether
they went first or second. The main differences arise from playing beyond the
goal score with zero shotguns rolled as player 1, and the added condition of
either player being at or above 10 in order to go for the goal with 1 shotgun
rolled. Also, specific strategy has been determined for play when either player is
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Algorithm 3: Llano Cases Policy

Input : player p, player score i, opponent score j, turn total b, shotguns rolled

s
Output: whether or not to roll
147 —i+b // i': score after holding
2 h={6,3,1} // h: tiebreaker hold values indexed by shotguns rolled
3 if i > 13V j > 13 then // If either player reached/exceeded goal...
4 if i = j then // if the scores are even...
5 if p=1then // player 1 holds at the appropriate turn score.
6 | return b < hls]
7 else // Player 2 holds when b reaches 1.
8 | return b < 1
9 end if
10 else if p =2 A4 < j then // If player 2 is trailing...
11 return (s <2Ai <j)V(s=2A4 <j) // match the opponent with
2 shotguns, exceed by 1 otherwise.
12 end if
13 return false // Otherwise hold.
14 else // If both players are below goal score...
15 if s =0 then // if O shotguns rolled...
16 if p=1then // player 1 goes for the higher of goal or j+9.
17 | return i < maz(13,j +9)
18 else // Player 2 goes for the goal.
19 | return i’ < 13
20 end if
21 else if s =1 then // If 1 shotgun rolled...
22 if i>10Aj > 10 then // and either player has at least 10...
23 | return i’ < 13 // go for the goal.
24 else
25 | return b < 4 // Otherwise, hold at 4.
26 end if
27 else // If 2 shotguns rolled...
28 | return b <1 // Hold at 1.
29 end if
30 end if

above the goal score, involving the memorization of a few constants for player
1, and playing to catch or slightly exceed their opponent in the case of player 2.

5.4 Neller Cases Policy

Algorithm 4, “Neller Cases Policy”, also breaks down cases by player p and num-
ber of shotguns rolled s.

This policy is similar in complexity and decisions to Algorithm 3, organizing
and handling endgame and 0 shotgun cases differently. It also has player 1 and 2
treating 8 and 10 as different end-game score thresholds, respectively. However,
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Algorithm 4: Neller Cases Policy

Input : player p, player score i, opponent score j, turn total b, shotguns rolled

s
Output: whether or not to roll
14 «—i+b // i': score after holding
2 h={6,3,1} // h: tiebreaker hold values indexed by shotguns rolled
3 if p=1 then // If player 1,
4 if i > 13Ai=j then // if tied at/above 13, hold at h values.
5 | return b < hls]
6 else if s = 0 then // If O shotguns, hold at > 13 with > 8 lead.
7 | return i’ < max(13,j + 8)
8 end if
9 e« 8 // Set player 1 end-game score threshold e to 8.
10 else // Else if player 2,
11 if 7 > 13 then // if player 1 has achieved the goal score,
12 return (s <2Ai <j)V(s=2A4i <j) // exceed/meet player 1’s
score with under/exactly 2 shotguns, respectively.
13 else if i > 13 A¢ > j then // If holding wins, hold.
14 | return false
15 else if s =0 then // Always roll with no shotguns.
16 | return {rue
17 end if
18 e« 10 // Set player 2 end-game score threshold e to 10.
19 end if
20 if s =1 then // If 1 shotgun rolled,
21 if i >eVj>ethen // hold at 13 if score(s) > e.
22 | return i <13
23 else // Otherwise, hold at 4.
24 | return b < 4
25 end if
26 else if s =2 then // If 2 shotguns rolled, hold at 1.
27 | return b < 1
28 end if

this better approximates optimal play performance, closing the optimal play gap
to ~1.00%.

Through these algorithms, we see that key play considerations (beyond trivial
decisions regarding immediate win/loss) could be approximately summarized as
follows: With 0 shotguns, keep rolling. With 1 shotgun, get at least 4 points, but
close to the game end, try to win with a lead as player 1, and just win as player
2. With 2 shotguns, get at least 1 point. For tiebreaker rounds, player 1 rolls
for 6/3/1 points with 0/1/2 shotguns, whereas player 2 tries to exceed/match
player 1’s score with under/exactly 2 shotguns.
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6 Future Work

Recall that our AYZD simplification to Zombie Dice treats all dice as having the
average (i.e. yellow) distribution of brains, shotguns, and footprints. In the full
game, we have the distribution of dice and dice outcomes shown in Sect. 2.

Our next step will be to compute optimal play for the full complexity of
2-player Zombie Dice. We will then compare performance of both the optimal
and human-playable AYZD policies against optimal Zombie Dice play to see how
much dice color distribution matters for play performance.

7 Conclusions

In this paper, we have computed and visualized optimal play for the 2-player
case of the All Yellow Zombie Dice game, a simplification of the regular Zombie
Dice game. Prior work has determined optimal turn scoring strategy [3], but
this is the first step towards understanding optimal game winning strategy. To
maximize expectation of score gain per turn is not to maximize expectation of
winning probability. We have determined that player 2 has a slight informational
advantage due to the fact that the game will always end with player 2’s turn.

In addition, we presented a variety of human-playable strategies, trading
off simplicity for performance against optimal play, with optimal play perfor-
mance gaps ranging from ~2.74% to ~1.00%. For casual play, we recommend
the Minh Cases Policy (Algorithm 2) with an optimal play performance gap of
only ~1.33%.

The All Yellow Zombie Dice game has a fairly complex optimal roll-hold pol-
icy boundary (Fig. 2), yet relatively simple human-playable policies offer decent
performance against optimal play, revealing some of the key considerations for
excellent play.
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