

# Optimal Play of the All Yellow Zombie Dice Game

Todd W. Neller, John C. Llano, Minh Q. Vu Dinh, and  
Clifton G.M. Presser

# Overview

- Rules
- Optimality Equations
- Solution Method
- Optimal Play Visualization
- Human-Playable Policies
  - Fixed hold-at
  - Minh cases
  - Llano cases
  - Neller cases
- Conclusions



# Zombie Dice

- Dice game for 2 or more players. (Here we consider 2 player only.)
- First published in 2010 by Steve Jackson
  - Jeopardy dice game in the Ten Thousand dice game family, e.g. Farkle, Cosmic Wimpout
- Jeopardy Dice Game – Primary mechanic: Roll/hold decisions where holding *secures* turn progress, whereas rolling *risks* all turn progress for potentially greater turn progress. “Push your luck.”

# Zombie Dice Rules

| Color  | Number of Dice | Brain Sides | Shotgun Sides | Footprint Sides |
|--------|----------------|-------------|---------------|-----------------|
| Green  | 6              | 3           | 1             | 2               |
| Yellow | 4              | 2           | 2             | 2               |
| Red    | 3              | 1           | 3             | 2               |

- 2 or more players using 13 non-standard (d6) dice (distribution above)
- Players will have the same number of turns. A turn consists of a sequence of player rolls 3 dice are drawn as random and rolled, and rolled shotguns and brains are set aside. Footprint rolls are included in the next 3 dice if the player continues rolling.
- The turn ends when either the player
  - decides to hold (i.e. stop rolling) and score the total number of brains rolled, or
  - has rolled three or more shotguns, ending the turn with no score change.
- A round consists of each player taking one turn in sequence.
- Any player ending their turn with a goal score of 13 or more causes that to be the last round of the game, unless tie(s) triggers additional tiebreaker round(s).
- At the end of the last round, the player with the highest score wins.

# Zombie Dice Example Round

| Player | Dice Drawn | Dice Rolled | Result [Decision]                                                                                                                         |
|--------|------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | G, G, Y    | F, F, S     | One shotgun set aside, two G retained for reroll [roll] S                                                                                 |
| 1      | G          | B, S, F     | One brain set aside, one shotgun set aside (2 total), one G retained for reroll [roll] B, S, S                                            |
| 1      | R, R       | B, S, S     | One brain set aside, two shotguns set aside (4 total), $\geq$ three shotguns $\rightarrow$ turn ends with no score gain B, B, S, S, S, S  |
| 2      | G, G, G    | B, B, F     | Two brains set aside, one G retained for reroll [roll] B, B                                                                               |
| 2      | G, Y       | B, B, F     | Two brains set aside (4 total), one G retained for reroll [roll] B, B, B, B                                                               |
| 2      | Y, R       | B, S, S     | One brain set aside (5 total), two shotguns set aside (2 total) [hold] $\rightarrow$ turn ends with a score gain of 5 B, B, B, B, B, S, S |

# All Yellow Zombie Dice

- Optimal play for *maximizing expected turn score* is known for Zombie Dice. Optimal play for *maximizing expected win probability* is **unknown** for Zombie Dice.
- We here compute optimal winning play for All Yellow Zombie Dice (AYZD) where all dice are yellow.

Nonterminal states are described as the 5-tuple  $(p, i, j, b, s)$ , where  $p$  is the current player number (1 or 2),  $i$  is the current player score,  $j$  is the opponent score,  $b$  is the turn total (number of brains set aside), and  $s$  is the number of rolled shotguns set aside.  $P(p, i, j, b, s)$  will denote the probability of player  $p$  winning in state  $(p, i, j, b, s)$  under the assumption of optimal play, i.e. each player plays so as to maximize one's own expected win probability.

# Probabilities of Roll Outcomes

Let  $P_{\text{roll}}(b, s)$  be the probability of rolling  $b$  brains and  $s$  shotguns (and thus  $3 - b - s$  footprints) on a roll of 3 dice:

$$P_{\text{roll}}(b, s) = \frac{\binom{3}{b} \binom{3-b}{s}}{3^3} = \frac{2}{9b!s!(3-b-s)!}$$

# Probability of Winning with a Roll

The probability of winning with a roll  $P_{\text{roll}}(p, i, j, b, s)$  under the assumption of optimal play thereafter is:

$$\begin{aligned} P_{\text{roll}}(p, i, j, b, s) &= \sum_{s^+=0}^{2-s} \sum_{b^+=0}^{3-s^+} (P_{\text{roll}}(b^+, s^+) P(p, i, j, b + b^+, s + s^+)) \\ &\quad + \sum_{s^+=3-s}^3 \sum_{b^+=0}^{3-s^+} (P_{\text{roll}}(b^+, s^+) (1 - P(3 - p, j, i, 0, 0))) \end{aligned}$$

where  $b^+$  and  $s^+$  denote the number of additional brains and shotguns rolled.

# Probability of Winning with a Hold

The probability of winning with a hold  $P_{\text{hold}}(p, i, j, b, s)$  under the assumption of optimal play thereafter is:

$$P_{\text{hold}}(p, i, j, b, s) = (1 - P(3 - p, j, i + b, 0, 0))$$

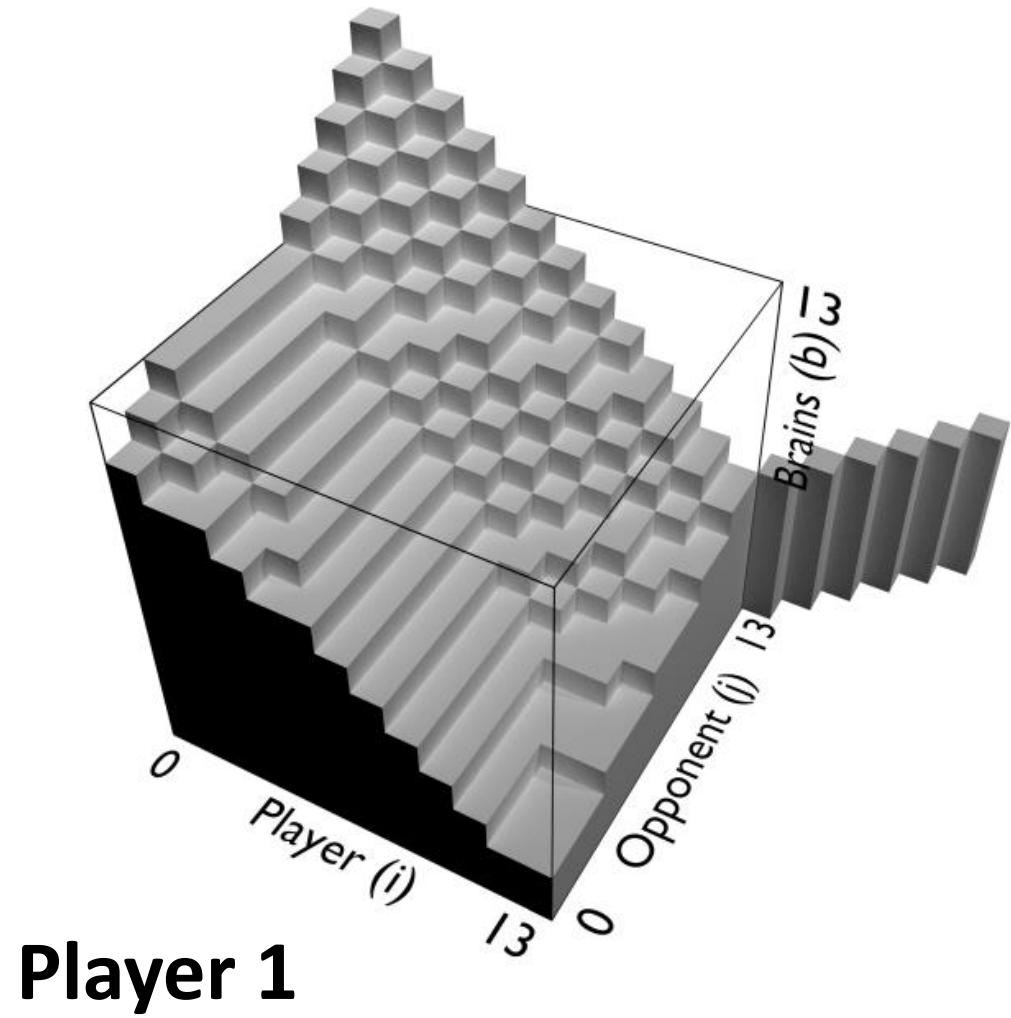
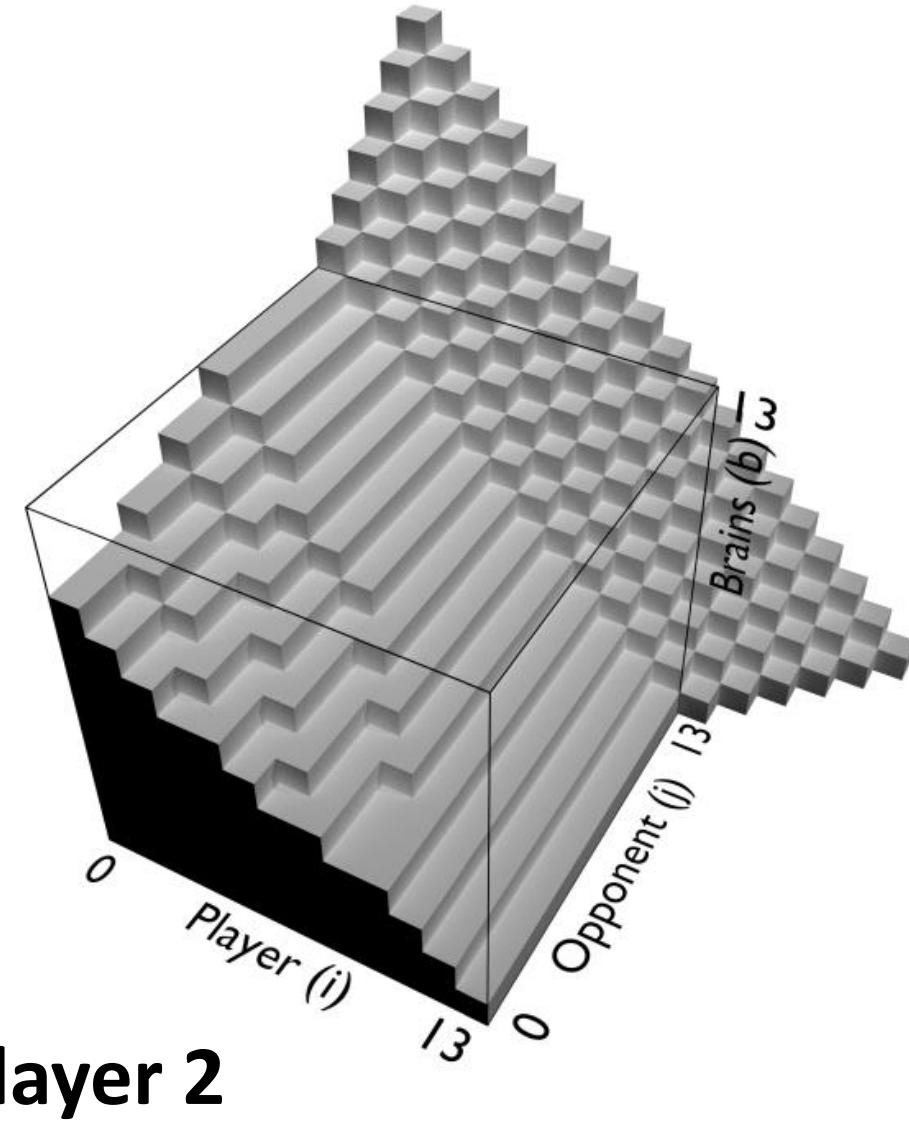
Then the probability of winning  $P(p, i, j, b, s)$  under the assumption of optimal play is:

$$P(p, i, j, b, s) = \max(P_{\text{roll}}(p, i, j, b, s), P_{\text{hold}}(p, i, j, b, s))$$

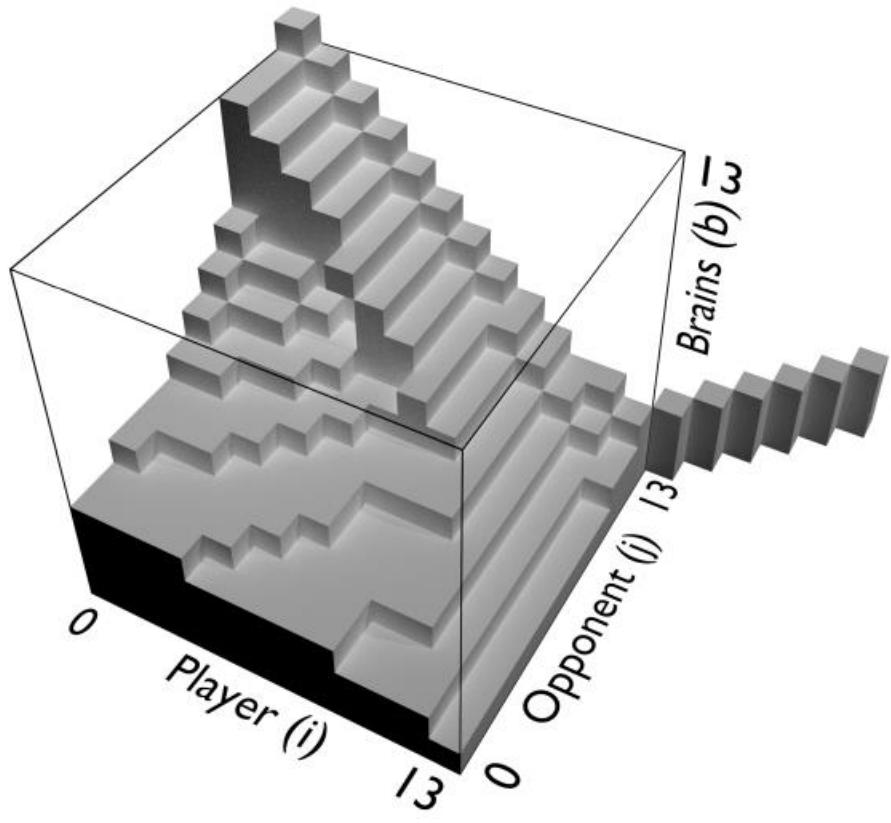
# Solving Optimality Equations

- $P_{roll}(b,s)$  is precomputed.
- Cyclic, recursive  $P(p,i,j,b,s)$  is solved through a variation of Value Iteration:
  - From initial arbitrary  $P$  estimates, substitute estimates in equation right-hand sides.
  - Compute the left-hand side  $P$  values as new, better estimates.
  - Terminate iterations of previous steps when the maximum change to a  $P$  estimate is  $\leq 1\times 10^{-14}$ .
- Since possible scores are unbounded, we created a high artificial upper scoring bound and verified that probabilities and policies were unchanged for higher bounds.

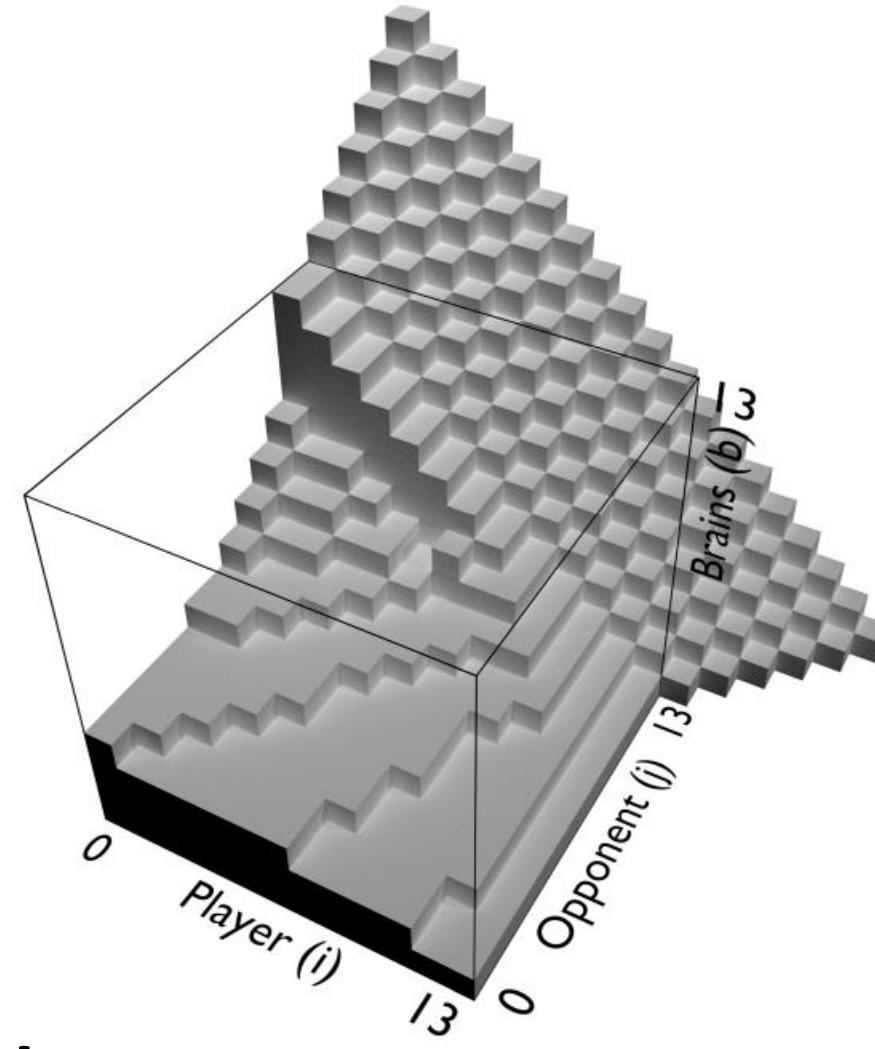
# Optimal Play (zero shotguns set aside)



# Optimal Play (one shotgun set aside)

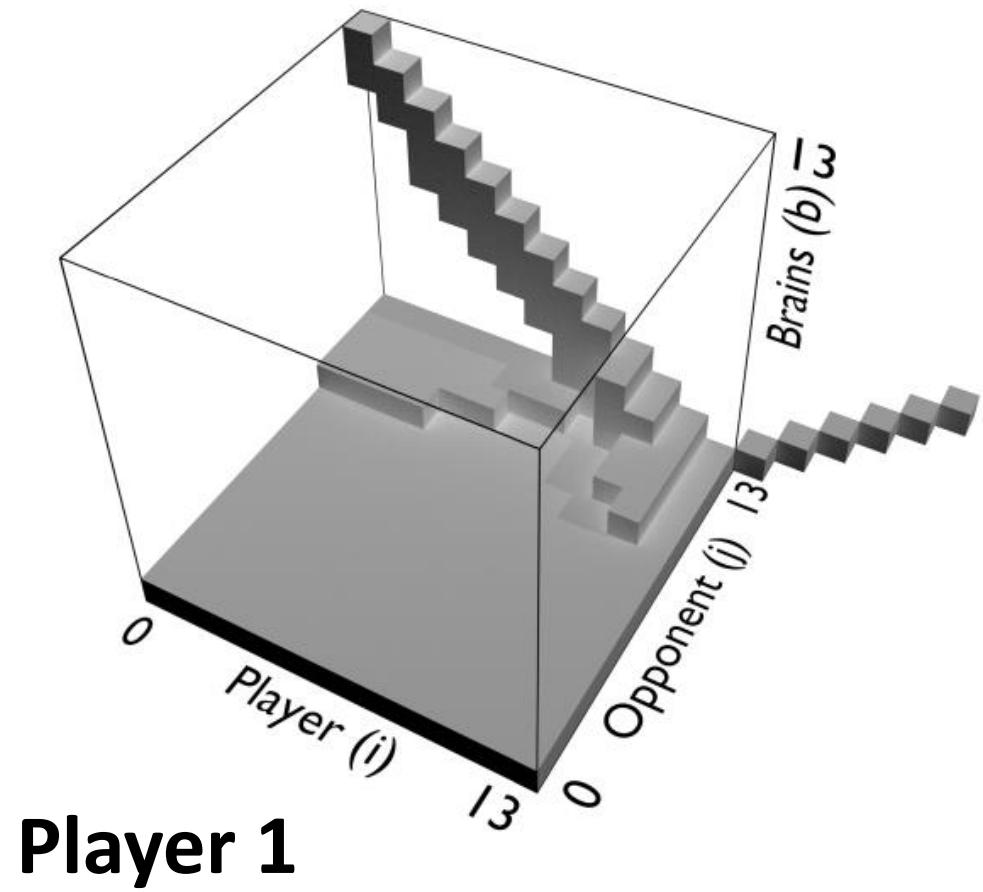
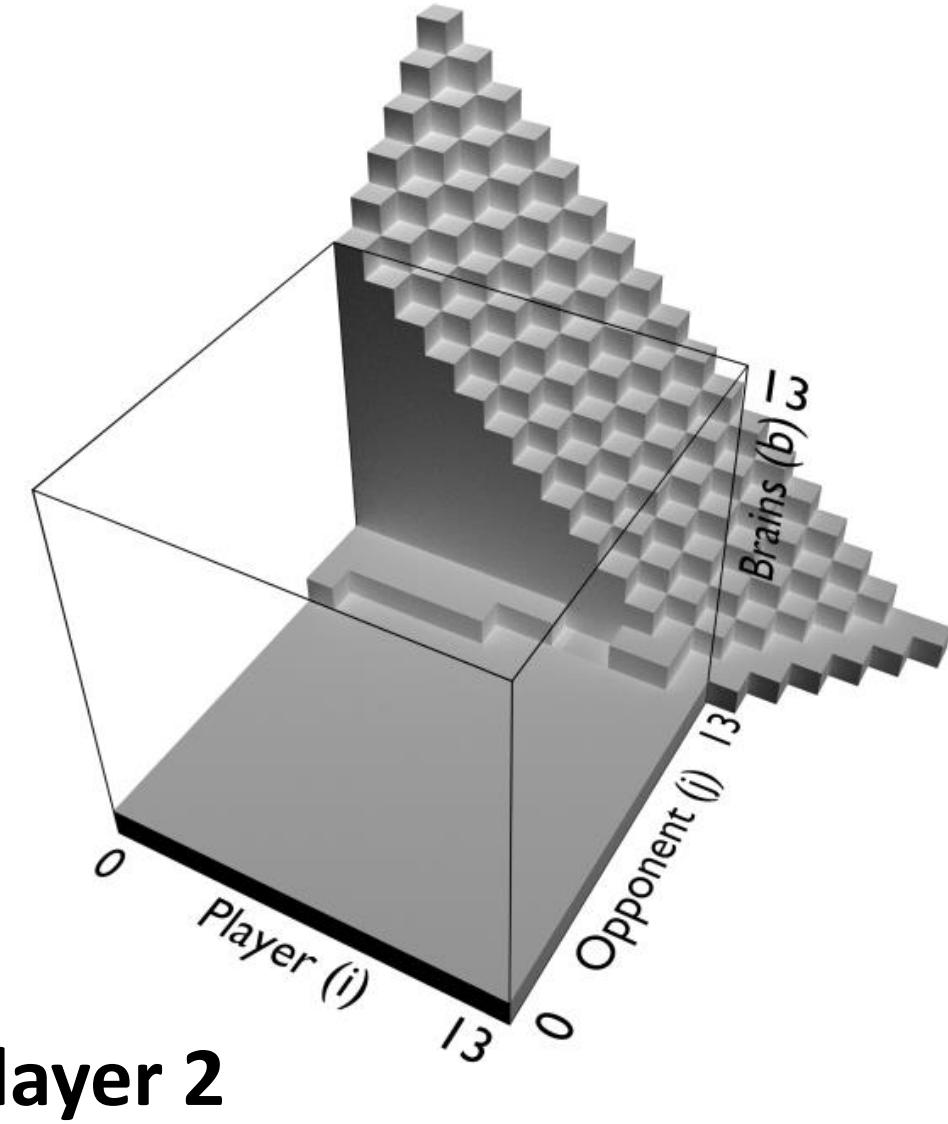


**Player 1**



**Player 2**

# Optimal Play (two shotguns set aside)



# Human-Playable Policies

- By human-playable, we mean involving simple mental arithmetic and limited recall of cases and constants.
- We will see a continuum of tradeoffs from simple play policies with modest performance, to complex play policies with excellent performance.

| Policy        | Difference |
|---------------|------------|
| Fixed Hold-At | -0.0274    |
| Minh Cases    | -0.0133    |
| Llano Cases   | -0.0118    |
| Neller Cases  | -0.0100    |

Fig. 2: Differences between human-playable and optimal policy win rates

# Fixed Hold-At Policy

---

**Algorithm 1:** Fixed Hold-At Policy

---

**Input** : player  $p$ , player score  $i$ , opponent score  $j$ , turn total  $b$ , shotguns rolled  $s$

**Output:** whether or not to roll

```
1 if  $p = 2 \wedge j \geq 13 \wedge i + b < j$  then           // When player 2 with  $j \geq goal\dots$ 
2   |   return true                                // and holding would lose, roll.
3 else if  $s = 0$  then                         // Keep rolling with 0 shotguns.
4   |   return true
5 else if  $s = 1$  then                      // Hold at 4 with 1 shotgun.
6   |   return  $b < 4$ 
7 else                                         // Hold at 1 with 2 shotguns.
8   |   return  $b < 1$ 
9 end if
```

---

# Minh Cases Policy

---

**Algorithm 2:** Minh Cases Policy

---

**Input** : player  $p$ , player score  $i$ , opponent score  $j$ , turn total  $b$ , shotguns rolled  $s$

**Output:** whether or not to roll

```
1 if  $p = 2 \wedge j \geq 13 \wedge i + b < j$  then          // When player 2 with  $j \geq goal \dots$ 
2   | return true                                // and holding would lose, roll.
3 else if  $s = 0$  then                          // Keep rolling with 0 shotguns.
4   | return true
5 else if  $s = 1$  then                      // With 1 shotgun,
6   | if  $j \geq 8$  then                  // if opponent's score  $j \geq 8$ ,
7     | | return  $i + b < \max(13, j + 3)$  // win (with lead of 3 if  $j \geq 10$ ),
8   | | else                                // else hold at 4.
9     | | return  $b < 4$ 
10  | end if
11 else                                // Hold at 1 with 2 shotguns.
12  | return  $b < 1$ 
13 end if
```

---

# Minh Cases Policy

- When player 1 has reached/exceeded the goal score, and player 2 would lose when holding, player 2 rolls.
- Otherwise:
  - 0 shotguns set aside: Keep rolling.
  - 1 shotgun set aside:
    - Opponent score  $\geq 8$ : win (with lead of 3 if opponent score  $\geq 10$ )
    - Opponent score  $< 8$ : hold at 4
  - 2 shotguns set aside: hold at 1

# Llano Cases Policy (part 1 of 2)

---

**Algorithm 3:** Llano Cases Policy

---

**Input** : player  $p$ , player score  $i$ , opponent score  $j$ , turn total  $b$ , shotguns rolled  $s$

**Output:** whether or not to roll

```
1  $i' \leftarrow i + b$                                 //  $i'$ : score after holding
2  $h = \{6, 3, 1\}$  //  $h$ : tiebreaker hold values indexed by shotguns rolled
3 if  $i \geq 13 \vee j \geq 13$  then // If either player reached/exceeded goal...
4   if  $i = j$  then // if the scores are even...
5     if  $p = 1$  then // player 1 holds at the appropriate turn score.
6       return  $b < h[s]$ 
7     else // Player 2 holds when  $b$  reaches 1.
8       return  $b < 1$ 
9   end if
10  else if  $p = 2 \wedge i < j$  then // If player 2 is trailing...
11    return  $(s < 2 \wedge i' \leq j) \vee (s = 2 \wedge i' < j)$  // match the opponent with
12      2 shotguns, exceed by 1 otherwise.
13  end if
14  return false // Otherwise hold.
```

# Llano Cases Policy (part 2 of 2)

```
14 else                                // If both players are below goal score...
15   if  $s = 0$  then                      // if 0 shotguns rolled...
16     if  $p = 1$  then // player 1 goes for the higher of goal or  $j + 9$ .
17       return  $i' < \max(13, j + 9)$ 
18     else                                // Player 2 goes for the goal.
19       return  $i' < 13$ 
20   end if
21 else if  $s = 1$  then                  // If 1 shotgun rolled...
22   if  $i \geq 10 \wedge j \geq 10$  then // and either player has at least 10...
23     return  $i' < 13$                       // go for the goal.
24   else
25     return  $b < 4$                       // Otherwise, hold at 4.
26   end if
27 else                                // If 2 shotguns rolled...
28   return  $b < 1$                       // Hold at 1.
29 end if
30 end if
```

---

# Neller Cases Policy (part 1 of 2)

---

**Algorithm 4:** Neller Cases Policy

---

**Input** : player  $p$ , player score  $i$ , opponent score  $j$ , turn total  $b$ , shotguns rolled  $s$

**Output:** whether or not to roll

```
1  $i' \leftarrow i + b$                                 //  $i'$ : score after holding
2  $h = \{6, 3, 1\}$  //  $h$ : tiebreaker hold values indexed by shotguns rolled
3 if  $p = 1$  then                                // If player 1, ...
4   if  $i \geq 13 \wedge i = j$  then    // if tied at/above 13, hold at  $h$  values.
5     return  $b < h[s]$ 
6   else if  $s = 0$  then // If 0 shotguns, hold at  $\geq 13$  with  $\geq 8$  lead.
7     return  $i' < \max(13, j + 8)$ 
8   end if
9    $e \leftarrow 8$                                 // Set player 1 end-game score threshold  $e$  to 8.
10 else                                         // Else if player 2, ...
11   if  $j \geq 13$  then    // if player 1 has achieved the goal score, ...
12     return  $(s < 2 \wedge i' \leq j) \vee (s = 2 \wedge i' < j)$  // exceed/meet player 1's
13     // score with under/exactly 2 shotguns, respectively.
14   else if  $i \geq 13 \wedge i > j$  then          // If holding wins, hold.
15     return false
16   else if  $s = 0$  then                      // Always roll with no shotguns.
17     return true
18   end if
19    $e \leftarrow 10$                                 // Set player 2 end-game score threshold  $e$  to 10.
20 end if
```

1.00% gap

# Neller Cases Policy (part 2 of 2)

```
20 if  $s = 1$  then                                // If 1 shotgun rolled, ...
21   | if  $i \geq e \vee j \geq e$  then                // hold at 13 if score(s)  $\geq e$ .
22   |   | return  $i' < 13$ 
23   | else                                         // Otherwise, hold at 4.
24   |   | return  $b < 4$ 
25   | end if
26 else if  $s = 2$  then                            // If 2 shotguns rolled, hold at 1.
27   | return  $b < 1$ 
28 end if
```

---

# Future Work

- Our next step will be to compute optimal play for the full complexity of 2-player Zombie Dice.
- We will then compare performance of both the optimal and human-playable AYZD policies against optimal Zombie Dice play to see how much dice color distribution matters for play performance.



# Conclusions

- Optimal play has been computed for the 2-player All Yellow Zombie Dice game.
- A variety of human playable strategies were presented, including the simple “Minh Cases” strategy that has a 1.33% gap from the optimal win rate.
  - When it’s player 2’s turn, roll if player 1 would win when player 2 holds. Otherwise,
  - With 0 shotguns set aside, keep rolling.
  - With 1 shotgun set aside,
    - Opponent score  $\geq 8$ , hold at 13 (with lead of 3 if opponent score  $\geq 10$ )
    - Opponent score  $< 8$ , hold at 4.
  - With 2 shotguns set aside, hold at 1.

